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Spina bifida is a complex congenital malformation of the nervous system with 

abnormalities at several levels along the neural axis. Spina bifida is heterogeneous 

in presentation and outcome and may result in life-long impairments with a 

pervasive impact on daily activities and community participation for affected 

individuals. As a result of improved medical care, such as neurosurgical 

interventions and improved urological care, the mortality rate has substantially 

declined over the past decades and spina bifida is now compatible with long-term 

survival. As such, it is a challenging disorder for every clinician working with 

children and adults with spina bifida.

Characterization

Spina bifida is primarily characterized by incomplete closure of the neural tube 

during early embryonic development resulting in abnormal spinal cord, 

meningeal, and mesenchymal tissue, mostly in the lumbosacral region. Broadly 

speaking, spina bifida can be categorized into open spinal dysraphism and closed 

spinal dysraphism [1]. In case of open spinal dysraphism, the abnormal neural 

tissue protrudes through open vertebral arches and a midline muscle-skin defect 

resulting in a membranous cystic swelling, called cele. Consequently, the 

abnormal neural tissue is exposed to the environment without skin covering. In 

most cases of closed spinal dysraphism, the abnormal neural tissue protrudes 

through open vertebral arches and a muscle defect as well, but this tissue is 

covered by normal skin, often in combination with a subcutaneous lipomatous 

mass. Together with anencephaly and encephalocele, spina bifida encompasses 

the broad spectrum of neural tube defects. 

Prevalence

Worldwide, the prevalence estimates of neural tube defects range from 1.0 to 

10.0 per 1,000 births with approximately equal frequencies for spina bifida and 

anencephaly [2]. The birth prevalence of spina bifida has decreased in the last 

decades due to folic acid fortification programs and an increased frequency of 

pregnancy terminations due to prenatal diagnosis by ultrasound screening. 

However, the prevalence seems to stabilize in the last few years [3,4]. The 

prevalence of spina bifida not only varies over time, but also by region, race, and 

ethnicity [5], which explains the worldwide range in prevalence estimates. In the 

Netherlands, the prevalence of spina bifida was 0.51 per 1,000 in the period from 

2006 to 2010, with a live birth prevalence of 0.24 per 1,000 [6].

General introduction 1
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metabolism, and apoptosis. In addition, many genes that are involved in early 

embryonic development are tested. Less than 20 % of the candidate genes studied 

have been determined as having even a minor effect on spina bifida risk [2]. 

Malformations at multiple levels along the neural axis

The pathology of spina bifida, in particular open spinal dysraphism, includes 

malformations at multiple levels along the neural axis (Figure 1). This paragraph 

describes these malformations in a caudo-cranial direction. 

The most distinct malformation is the spinal anomaly, which results from incomplete 

closure of the neural tube (see paragraph pathogenesis and etiology). Based on 

the clinical appearance of the spinal anomaly, spina bifida is initially categorized 

Pathogenesis and etiology

Although the pathogenesis of spina bifida is not completely understood, the 

‘two-hit’ hypothesis as proposed by Heffez et al. [7] is widely supported regarding 

open spinal dysraphism. In normal spinal cord development, the neural plate is 

formed by differentiation of ectodermal cells. Folding of the neural plate results 

in a neural groove and subsequently, the neural folds fuse in the midline to from 

the primary neural tube. This process occurs during weeks 3 and 4 of embryonic 

development and is called primary neurulation. Open spinal dysraphism results 

from failures in this process [8]. Data from animal models suggest that 

disturbances in cell adhesion or alterations in neural plate folding prevent 

apposition of the neural folds [9]. The second hit is damage to and neurodegen-

eration of exposed aberrant neural tissue in utero. In addition to toxicity of 

amniotic fluid causing chemical injury [10], mechanical shearing and abrasive 

stresses on the surface of the neural tissue cause damage to this delicate tissue 

[11]. 

 Regarding closed spinal dysraphism, the pathogenesis is less well understood. 

Most forms of closed spinal dysraphism are also thought to originate from 

defective primary neurulation involving focal premature disjunction of the 

cutaneous ectoderm from the neuroectoderm (neural plate). As a consequence, 

mesenchymal tissue can freely enter the interior of the neural tube and make 

contact with the ependymal lining. The ependyma induces the mesenchymal 

tissue to develop into aberrant lipomatous tissue [12].

 The etiology of spina bifida is multifactorial with involvement of both 

environmental and genetic determinants. A large number of potential risk factors 

have been implicated, but most of the reported associations are weak or have not 

been replicated in subsequent studies. Therefore, only a few well-known risk 

factors have been established for spina bifida, including a previous affected 

pregnancy, inadequate maternal intake of folic acid, pre-existing maternal 

diabetes, and valproic acid or carbamazepine use. In addition, a number of 

strongly suspected risk factors are reported, including poor maternal vitamin 

B12 status, maternal obesity, maternal hyperthermia, and maternal diarrhea 

[13]. Genetic factors have been subject of extensive research as well. Although 

most neural tube defects are isolated, a genetic influence is suggested as neural 

tube defects have a higher concordance rate in monozygotic twins compared to 

dizygotic twins and are more common among siblings and in females [14]. 

Moreover, neural tube defects occur as part of syndromes, chromosomal anomalies, 

and a few single gene disorders [2]. Over a hundred candidate genes have been 

examined for associations with isolated spina bifida. The candidate genes studied 

include those important in folic acid metabolism, glucose metabolism, retinoid 
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of cerebrospinal fluid through the spinal anomaly reduces the distension of the 

embryonic ventricular system. Subsequently, decreased inductive pressure on 

the surrounding mesenchymal tissue results in an abnormally small posterior 

fossa. Approximately one third of the patients with spina bifida develop signs or 

symptoms of Chiari II malformation [22]. These may result from intrinsic 

developmental hindbrain abnormalities or from secondary damage due to hindbrain 

compression. A clear association between the morphological appearance of the 

malformation and the presence of signs and symptoms does not exist [24].

 Hydrocephalus is present in 80-85% of infants with open spinal dysraphism, 

requiring shunting in almost all infants with thoracic spinal anomalies and in 

less than 70% of infants with sacral spinal anomalies [25]. The pathogenesis is 

not completely elucidated yet, but it is hypothesized that hydrocephalus is caused 

by a compromised cerebrospinal fluid flow due to crowding in the posterior 

fossa or an obstruction in a malformed aqueduct [26]. Hydrocephalus may be 

associated with specific functional and neuropsychological abnormalities, many 

of which can be attributed to dysfunction of particular brain regions [27,28].

 A certain degree of corpus callosum dysmorphology is present in virtually all 

children with open spinal dysraphism. Although the morphology is highly variable, 

the genu is relatively preserved with hypoplastic features occurring in the corpus 

and agenesis being most prominent in the isthmus and splenium [29]. This 

dysmorphology is related to deficits in cognitive tasks [30].

 Other supratentorial malformations include, but are not limited to, large massa 

intermedia, abnormal interhemispheric commissures, heterotopias, and stenogyria 

[21,31].

Outcome and prognosis

Over the past decades, childhood survival of children with spina bifida has 

increased to 85% [32,33] and the overall outcome has improved, both as a result 

of progress in medical care and surgical management [13,3]. Moreover, in the era 

of prenatal screening, elective termination of pregnancy following a prenatal 

diagnosis of spina bifida did not only result in a decreased birth prevalence, but 

also in improvement of the overall outcome, as the most severely affected fetuses 

are less likely to come to term [34]. Despite improvements in outcome, the 

consequences with respect to daily activities and community participation are 

life-long [32,35-39]. 

 The direct consequences of the spinal anomaly are generally most pronounced. 

They include motor impairment in the lower limbs leading to restricted mobility; 

sensory loss leading to gait instability and pressure sores; bladder and bowel 

into open spinal dysraphism and closed spinal dysraphism [1]. In open spinal dysraphism, 

the abnormal non-neurulated spinal cord, called neuro placode, and the meninges 

are exposed to the environment through open vertebral arches and a midline 

muscle-skin defect [15]. Because the mesenchymal tissue does not migrate posterior  

to the neuroplacode, bones, cartilage, and muscles develop anterolaterally to the 

neuroplacode. Nerve roots originate from the ventral surface of the neuroplacode 

and course through the subarachnoidal space to reach their corresponding 

neuroforamina and innervate limb muscles [16]. Open spinal dysraphism can be 

further classified into myelomeningocele, myelocele, and the unilateral variants 

of these entities, hemimyelomeningocele and hemimyelocele. In myelomeningo-

cele, the neuroplacode and aberrant meninges protrude above the cutaneous 

surface due to expansion of the underlying subarachnoidal spaces, whereas in 

myelocele, the neuroplacode and aberrant meninges are flush with the cutaneous 

surface [1]. Myelomeningoceles account for the majority of open spinal dysraphism.  

In closed spinal dysraphism, the spinal anomaly with the aberrant neural tissue 

is completely covered with skin, although cutaneous marks are present in up to 

50% of the patients [17]. Closed spinal dysraphism can be further categorized 

based on the presence or absence of a subcutaneous mass. Spinal anomalies with 

a subcutaneous mass are lipomyelocele, lipomyelomeningocele, meningocele, and 

terminal myelocystocele. Spinal anomalies without a subcutaneous mass encompass 

a more heterogeneous group, including intradural lipoma, tight filum terminale, 

dermal sinus, diastematomyelia, and caudal agenesis [16]. 

 Within the subtypes mentioned, phenotypic heterogeneity is substantial 

and spinal anomalies vary in size and position along the spine. In general, open 

spinal dysraphism is associated with other substantial malformations along the 

neural axis (see below), whereas none or just minor other malformations may be 

associated with closed spinal dysraphism [18,19]. In open spinal dysraphism, the 

spinal anomaly is usually located more cranial than in closed spinal dysraphism.

 The spinal cord in the fused spinal segments above the spinal anomaly may be 

abnormal as well. This may be due to syringomyelia, a fluid filled cavity central 

in the spinal cord, or due to stretching of the spinal cord resulting from traction 

on the spinal cord in case of a so-called tethered spinal cord. 

 Chiari II malformation is almost uniquely associated with open spinal dysraphism 

[20]. It is a complex and heterogeneous malformation that is characterized by a 

small posterior fossa, downward herniation of the cerebellum and brainstem 

through an enlarged foramen magnum, and upward herniation of the cerebellum 

through an enlarged tentorial incisura [21]. In addition to these characteristics, 

other specific features are frequently present and include tectal beaking, 

medullary kinking, small fourth ventricle, and hypoplastic tentorium [22]. 

Regarding the pathogenesis, McLone and Knepper [23] hypothesized that leakage 
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respectively, 86% had a shunted hydrocephalus, and 15% and 52% were continent 

of urine or feces, respectively. Forty-five percent of the young adults were 

employed and 15% lived independently. Illustrative for the Dutch situation are 

the results from the ASPINE study (Adolescents with spina bifida in the 

Netherlands study), a multicenter study in which the outcome of 179 young 

adults with spina bifida was evaluated. In many impairment domains, subjects 

with spina bifida and hydrocephalus encountered more problems than those 

with spina bifida without hydrocephalus or those with closed spinal dysraphism. 

Subjects with high level spinal anomalies encountered more problems than 

subjects with low level spinal anomalies [36]. Of the 119 young adults with spina 

bifida and hydrocephalus in the ASPINE study, 44% were ambulant, 80% had an 

IQ above 70, 71 % were incontinent of urine, and 46% were incontinent of feces. 

Twenty percent had a partner, 31% had regular employment, and 5% lived 

independently [36,38,39,50]. 

 A number of studies on the quality of life of children with spina bifida have 

been also reported in the literature. However, it is difficult to arrive at a synthesis 

of this literature, as several different instruments were used and the results are 

equivocal. Some authors found that the health-related quality of life was below 

normal [51], whereas others concluded that quality of life was good or comparable 

to people without spina bifida [52]. In the ASPINE study, the overall satisfaction 

with life of young adults with spina bifida appeared more or less the same as that 

of their healthy peers and the severity of spina bifida appeared to have only a 

minor impact on life satisfaction [53].

 Although the overall outcome of children with spina bifida has improved 

over the past decades, determining the individual long-term prognosis for an 

affected infant born nowadays is still difficult [54,55]. Some rough neonatal 

outcome predictors have been established. The extent of the sensory deficit is 

related to the outcome and has a predictive value for ambulation, need of daily 

care, and community participation in adulthood [56,35]. A higher anatomical 

level of the spinal anomaly is associated with more severe brain malformations, 

which in turn are associated with poorer neurobehavioral outcome [57]. However, 

the anatomical level is only partly related to the level of neurological impairment, 

as the latter level is generally located more cranially than the anatomical level 

[25]. Furthermore, the presence of hydrocephalus is associated with poorer 

outcome [36] with the annotation that cognitive impairments in particular are 

related to the number of shunt-related complications [58-60]. Using prenatal 

ultrasound imaging, the anatomical level of the spinal anomaly and head 

circumference are predictive for survival, but no obvious prenatal ultrasound 

predictors for mental and motor outcome have been identified so far [61,62]. 

dysfunction leading to incontinence, constipation, urinary tract infections, and 

sometimes renal damage; and sexual dysfunction leading to impotence, 

decreased sensation, and complicated reproduction. In addition, orthopedic 

problems such as scoliosis, kyphosis, and joint contractures are frequently seen. 

During childhood, restricted ambulation and bowel dysfunction are the most 

prominent problems. In adolescence and adulthood, incontinence, constipation, 

foot deformities, and scoliosis become the most frequently reported health 

problems [36,40]. Incontinence and sexual dysfunction have repercussions for 

relationships and sexuality in later life as well [40]. 

 As already stated, signs and symptoms of Chiari II malformation are present 

in approximately one third of the patients. Children younger than 2 years of age 

present most frequently with cranial nerve and brainstem signs, such as an 

inspiratory stridor due to vocal cord abduction paresis, apnoeic episodes, 

swallowing difficulties with chronic aspiration, and nystagmus. In older 

children, sign and symptoms of cervical myelopathy are the hallmark with 

upper limb weakness and spasticity being the most common findings. Ataxia 

and occipital headaches are common as well [22]. The mortality among 

symptomatic children is 15 to 35 % [41,42] and applies virtually exclusively to 

children under the age of 2 years [43]. Consequently, Chiari II malformation is 

the most frequent cause of death among infants with spina bifida. 

 Cognitive impairment is considered to be relatively mild, as most patients 

tend to have intelligence skills within the low-average to average range with 

verbal skills generally being more advanced than nonverbal problem-solving 

skills [44,45]. Specific cognitive impairments associated with spina bifida are 

deficits in visual perception, motor skills, and memory [46-48]. These cognitive 

deficits can adversely affect educational and occupational achievements and the 

ability to live independently. 

 Several studies concerning survival and outcome of patients with spina 

bifida are available in the literature. Illustrative is the longest follow-up study 

from the UK described by Oakeshott and Hunt [35,49]. Of the 117 patients followed 

for 40 years, 40 patients died before the age of 5 years and 31 during the next 35 

years. Of the 46 survivors, 30% could walk at least 50 meters, 80% had an IQ of 80 

or more, 83% had a shunted hydrocephalus, and 20% were continent of urine and 

feces. Thirty-three percent worked in open employment and 46% drove a car, 

while 35% needed daily care. Another follow-up study described the 25 years 

outcome of a cohort of 118 individuals with spina bifida in the USA [32]. 

Twenty-eight (24%) children had died at time of follow-up, the majority (18/28) 

during infancy or in their preschool years and most of them (13/18) due to 

symptomatic Chiari II malformation. Of the 71 individuals available for follow- 

up, 46% were ambulant, 36% and 49% had attended high school or college, 
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protocol received significant condemnation as well as support in the literature. 

In addition to different expert opinions, the improved overall outcome over the 

last decades and the lack of evidence-based outcome predictors for an individual 

infant with spina bifida add to the discussion on selective treatment [54,60,63]. 

Personal opinions and perhaps emotional arguments may prevail over medical 

arguments in decision-making processes regarding the treatment of newborn 

infants with spina bifida.

 Quite in contrast to selective treatment, prenatal surgery has become an 

optimistic new treatment option. From animal studies, evidence exists that 

secondary damage to neural tissue according to the ‘two hit’ theory may be 

prevented by covering the spinal anomaly at an early gestational age and that 

consequently, neurological function is preserved [71,72]. In humans, the first 

successful prenatal surgical interventions for spina bifida were reported in the 

late 1990s [73,74]. Recently, the initial favorable results were confirmed in a 

randomized trail (Management of Myelomeningocele Study – MOMS trail) 

showing improvement of motor impairment and reduction of hindbrain herniation 

and hydrocephalus shunting at the age of two years after prenatal surgery 

compared to postnatal surgery [75]. However, criticism regarding prenatal surgery 

exists as well, because long-term outcome is still not available and prenatal 

surgery is associated with increased risks of maternal and fetal complications 

[76,77]. Currently, prenatal surgery is not yet performed in the Netherlands.

Motivation for this thesis

In line with the current considerations on spina bifida mentioned in the 

paragraphs above, the motivation for the studies described in this thesis is 

founded on intrinsic characteristics of spina bifida and extrinsic topics regarding 

outcome and treatment. The intrinsic characteristics concern the pathology at 

multiple levels along the neural axis and the morphological and functional 

heterogeneity of spina bifida. Considering the reported improvements in motor 

impairment and hindbrain herniation after prenatal surgery, the pathophysiol-

ogy of lower limb motor impairment in relation to the multilevel pathology and 

the morphological heterogeneity of Chiari II malformation are of particular 

interest. This is further explained below.

 Considering the complex multilevel pathology, motor impairment in the 

lower limbs may result from lower motor neuron (LMN) and upper motor neuron 

(UMN) dysfunction (Figure 1). LMN dysfunction directly results from segmental 

disorders in the spinal anomaly. UMN dysfunction, however, may result from 

abnormalities in the corticospinal tract either in or above the spinal anomaly. 

Treatment

Over the past decades, medical care and surgical management of individuals 

with spina bifida have greatly improved. The main advances were the treatment of 

hydrocephalus using cerebrospinal fluid shunts in the late 1950s and improved 

urological management with the introduction of clean intermittent catheterization 

in the 1970s. Currently, the treatment is multidisciplinary. Neurosurgical 

management is aimed at maintaining stable neurological functioning throughout 

life [63]. Initially, surgical closure of the spinal anomaly is performed within the 

first days after birth. Shortly after, most infants need cerebrospinal fluid shunt 

insertion for hydrocephalus and most of these infants become shunt-dependent 

for life. Shunt-related complications, such as infections and dysfunctions, occur 

at all ages and require immediate treatment. Further treatment may include 

posterior fossa decompression to relief symptomatic Chiari II malformation, 

untethering of a tethered spinal cord, orthopedic interventions for scoliosis  

and joint contractures, and bladder and bowel management. Based on the 

individual needs, support from pediatricians, rehabilitation medicine, physical 

and occupational therapists, social workers, wounds specialists, and psychologists 

are important as well [64].

 With the advances in the management of spina bifida, a discussion about 

selective treatment arose in the 1970s. John Lorder, a British pediatrician, 

promoted selection criteria for treatment and suggested withholding active 

treatment from newborns with gross macrocephaly, myelomeningocele above 

spinal level L3, severe kyphoscoliosis, or additional congenital defects. He argued 

that many of these children were a burden to themselves, their family, and 

society [65,66]. None of these criteria, either in isolation or in combination, 

however, is an entirely accurate predictor of outcome [64]. The policy of Lorber 

was, among others, opposed by David McLone, who advocated aggressive, 

coordinated, multidisciplinary care for all newborns with spina bifida. One of 

the reasons for McLone’s policy was that there is little difference in outcome 

between children surviving selective treatment and children surviving 

non-selective treatment [67]. Nowadays, non-selective treatment is standard care 

in North America [60,63], whereas selective treatment is not uncommon in 

Europe. As such, the discussion on selective treatment still continues [54,68]. In 

the Netherlands, a set of guidelines to clarify and facilitate the assessment of 

clinically stable newborn infants, who are considered to be suffering unbearably 

and for whom the prognosis is felt to be hopeless (‘The Groningen Protocol’), was 

proposed in 2001 and published in 2005 [69]. Verhagen et al. [70] reported 

twenty-two newborn infants with myelomeningocele that met the criteria for 

ending life by lethal injection according to the ‘The Groningen Protocol’. The 
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Neurophysiological methods

Transcranial magnetic stimulation (TMS) of the cerebral cortex and magnetic 

stimulation of spinal roots are non-invasive neurophysiological methods to 

investigate LMN and UMN function in adults and children [78,79]. Based on the 

principle of electromagnetic induction, TMS induces an electric current in the 

underlying brain by a powerful fluctuating extracranial magnetic field. This 

electric current results in activation of cortical motor neurons, either directly by 

excitation at the axon hillock (direct excitation) or indirectly (transsynaptically) 

by activation of cortical interneurons projecting onto corticospinal motor 

neurons (indirect excitation). Fast-conducting corticospinal neurons have a 

lower threshold for direct excitation, whereas slow-conducting corticospinal 

neurons have a lower threshold for indirect excitation [80]. Following excitation, 

corticospinal motor neurons discharge and volleys are mediated via the 

corticospinal tract that has monosynaptic connections with spinal alpha motor 

neurons, which subsequently innervate voluntary muscles. Following TMS, 

motor evoked potentials (MEPs) can be recorded from limb muscles by surface 

electromyography. These MEPs provide information about cortical motor 

function and the integrity of the corticospinal tract (UMN function) [81]. This 

method is illustrated in Figure 2. 

 Based on the same principle of electromagnetic induction, spinal magnetic 

stimulation activates the motor nerve roots at the point where they leave the 

intervertebral foramina. At this point, the magnetic field focuses and the 

stimulus threshold is low [82-84]. As the configuration of the spinal column 

insulates the spinal cord, it is impossible to stimulate the spinal cord directly 

[82]. Following spinal magnetic stimulation, MEPs can be recorded from limb 

muscles by surface electromyography. These MEPs provide information about 

LMN function [81]. 

 In addition, conventional nerve conduction studies are convenient tools to 

investigate LMN function. Following percutaneous supramaximal electrical 

stimulation of a peripheral nerve, compound muscle action potentials (CMAPs) 

can be recorded from the target muscle by surface electromyography. The CMAP 

is a reflection of activated motor units in the muscle recorded [85].

 Several parameters can be used to study MEPs and CMAPs (Figure 3). The 

latency measures the conduction time from the stimulus to the onset of the 

response. The amplitude of the response and the area under the response curve 

provide estimates of the number of activated motor units. However, the area 

provides a better estimate than the amplitude, as the area is less liable to 

dispersion of motor volleys [86,87]. Therefore, we used the area instead of the 

amplitude. The central motor conduction time (CMCT) is calculated from the 

Important abnormalities above the spinal anomaly are Chiari II malformation 

and supratentorial malformations, whether or not related to hydrocephalus. 

Clinical signs of LMN dysfunction are generally most prominent, but knowledge 

about the proportional contribution of LMN and UMN dysfunction to motor 

impairment and the specific localization of UMN dysfunction is limited. 

Furthermore, it is of interest whether the improvement in motor impairment 

after prenatal surgery is related to improved LMN or improved UMN function. 

 Usually, Chiari II malformation is clinically diagnosed with the help of MR 

imaging, but the morphological appearance of the Chiari II malformation on MR 

images is quite heterogeneous. Therefore, the interpretation of its features as 

seen on MR images may not always be straightforward. The heterogeneity and an 

abundance of features that could be taken into account may obscure unambiguous 

assessment of Chiari II malformation. Definitions of features may be equivocal 

and reviewers may interpret features differently. This may be explained by the 

qualitative nature of these features and the fact that the distinction between 

normal and abnormal brain development is not defined by unambiguous cutoff 

points. Although most features are typical for Chiari II malformation, knowledge 

about the reliability of rating these features on MR images is lacking. These 

difficulties may hamper the assessment of Chiari II malformation not only in 

clinical settings, but also in research settings concerning the outcome of 

hindbrain herniation after prenatal surgery. 

 The extrinsic topics that motivated this thesis are the improved overall 

outcome of children with spina bifida and the decisions that have to be taken 

regarding prenatal and postnatal treatment opportunities. These decision- 

making processes are complicated by the lack of up-to-date knowledge about the 

outcome of children with spina bifida and the fact that the outcome of an 

individual newborn infant with spina bifida is hardly predictable. Therefore, it 

is important to have instruments that could provide objective information about 

the morphological abnormalities and the severity of the neurological deficits to 

guide decision-making processes.

 Neurophysiological studies, such as transcranial and spinal magnetic 

stimulation and nerve conduction studies may provide new insights into the 

pathophysiology of LMN and UMN dysfunction in spina bifida. Furthermore, the 

MR assessment of Chiari II malformation could be upgraded by a critical 

morphological and morphometric appraisal of the malformation on MR images. 

These neurophysiological and imaging instruments could contribute to decision-

making processes regarding the treatment of spina bifida, as they may provide 

objective outcome measures or predictive tools. 
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It may be helpful by confirming the presence of corticospinal tract involvement 

in neurological disorders and provides insight into disease mechanisms [80]. It is 

a safe and noninvasive method that is easily used and well tolerated [91,92]. 

Background, aim, and outline of the thesis

This thesis is the third PhD thesis achieved within the Nijmegen Interdisciplin-

ary Spina Bifida program. In this program, several disciplines participate: 

pediatric neurology, neuropsychology, clinical neurophysiology, neuroradiology, 

obstetrics, epidemiology, family psychology, and empirical theology. The main 

purpose of the program is to determine the neurological, neuropsychological, 

and family-related outcomes of children with spina bifida aiming to improve the 

prognostication and to support decision-making processes regarding prenatal 

and postnatal treatment. Data collection started in January 2002. A cohort of 44 

newborn infants with spina bifida was prospectively included and followed into 

early childhood. In addition, a cohort of 56 school-age children with spina bifida 

was recruited from the outpatient multidisciplinary spina bifida clinics. Regarding 

the pediatric neurological part of the program, data collection included prenatal 

ultrasound imaging, physical and neurological examination, cranial ultrasound 

imaging, muscle ultrasound imaging, MR imaging of the brain and spinal cord, 

and neurophysiological investigations as mentioned before. 

difference between the latencies of the transcranial and spinal MEPs in the same 

target muscle [88]. The CMCT includes the times for excitation of cortical motor 

neurons, conduction via the corticospinal tract, and excitation of spinal motor 

neurons sufficient to exceed their firing threshold [78]. 

 When performing TMS, facilitation of MEPs is achieved during voluntary 

contraction of the target muscle, which results in a reduced threshold for 

excitation, a shorter MEP latency, and an increased MEP amplitude and area [89]. 

Although the physiology of facilitation is not entirely understood, both changes 

in spinal and cortical excitability seem to be involved [90].

 So far, magnetic stimulation has proven to be of diagnostic value in several 

neurological disorders in adults and children [78,79]. TMS is particularly useful 

to investigate cortical motor function and the integrity of the corticospinal tract.  
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Figure 2   Principle of magnetic stimulation.

Figure 3   Parameters of MEP and CMAP. Asterisk indicates stimulus artifact. 
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measures are investigated, in an attempt to select measures that may be suitable 

to address the severity of Chiari II malformation. 

 Finally, the main findings and methodological considerations are discussed 

in Chapter 9, where the final concluding remarks and future perspectives are 

presented as well. 

The specific aim of this thesis is twofold. First, we aim to disentangle the proportional 

contribution of LMN and UMN dysfunction to motor impairment in the lower 

limbs using conventional nerve conduction studies and transcranial and spinal 

magnetic stimulation. In addition, we aim to provide objective measures for the 

degree of motor impairment through investigation of the diagnostic and prognostic 

values of these neurophysiological instruments. Second, we aim to improve the 

MR assessment of Chiari II malformation by critically appraising its morphological 

features and performing morphometric analyses, in order to select those features 

and measures that are particularly useful for the diagnosis, severity assessment, 

and outcome evaluation of Chiari II malformation.

In summary, this thesis addresses the following research questions: 

1.  At which levels along the neural axis is the pathology located that determines motor 

impairment in the lower limbs in children with spina bifida?

2.  Can neurophysiological tools provide objective information about motor impairment 

in children with spina bifida and what is the diagnostic and prognostic value of these 

tools?

3.  Which features and measures are essential in the MR assessment of Chiari II malformation? 

4.  Can neurophysiological and imaging tools provide objective standards to evaluate the 

outcome of prenatal and postnatal treatment? 

The results are described in two parts. Part one contains the neurophysiological 

studies. Chapter 2 describes a pilot study, in which the applicability of transcranial 

and lumbosacral magnetic stimulation was investigated in the newborn infants 

with spina bifida. In Chapter 3 and 4 associations between CMAPs and MEPs and 

neurological impairment in newborn infants with spina bifida are described. 

Subsequently, we investigated the predictive value of these neonatal MEPs and 

CMAPs for neurological outcome at the age of two years, which is described in 

Chapter 5. Finally, neurophysiological studies performed in the cohort of 

school-age children with spina bifida are described in Chapter 6. In order to 

disentangle the proportional contribution of LMN and UMN dysfunction to 

motor impairment, neurophysiological measurements in mildly and severely 

impaired children with spina bifida are compared to measurements in children 

without spina bifida. 

 Part two contains the brain MR imaging studies. Chapter 7 describes a qualitative 

study, in which the morphological features of Chiari II malformation are studied 

by assessing their interobserver reliability. Among the abundance of features, 

those features that are essential for the MR assessment of the malformation are 

selected. Subsequently, a quantitative study is presented in Chapter 8. In this 

study, the interobserver reliability and diagnostic value of morphometric 
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Abstract

Searching for a tool to quantify motor impairment in spina bifida, transcranial 

and lumbar magnetic stimulation were applied in affected newborn infants. 

Lumbar magnetic stimulation resulted in motor evoked potentials in both the 

quadriceps muscle and the tibialis anterior muscle in most (11/13) subjects. 

However, transcranial magnetic stimulation did not lead to any response at all. 

A strong left-to-right correlation existed for amplitude and for latency. Lumbar 

magnetic stimulation proved to be applicable in newborn infants with spina 

bifida. Although current concepts regarding spina bifida suppose lower motor 

neuron dysfunction, the results of this study suggest that lower motor neuron 

integrity is at least partly preserved after birth. Transcranial magnetic stimulation 

does not lead to responses in healthy newborn infants because of insufficient 

synaptogenesis, myelinogenesis and axon thickness. Therefore, conclusions on 

upper motor neuron function in spina bifida cannot be drawn. To what extend 

the method used here can achieve the aim to quantify motor impairment is a 

matter of further study.

Introduction

Motor evoked potentials (MEPs) evoked by magnetic stimulation might be relevant 

in quantifying motor impairment in newborn infants with spina bifida. In magnetic 

stimulation, the cortex and the cervical and lumbar nerve roots can be stimulated 

using an external coil and MEPs can be recorded from limb muscles after stimulation 

[1]. Magnetic stimulation has a diagnostic value in neurological disorders in 

which the corticospinal tract, the spinal cord, motor neurons, nerve roots, and 

peripheral nerves are involved [2,3]. Furthermore, magnetic stimulation is a safe 

and non-invasive method that is easily used and well tolerated [4-6]. In children, 

magnetic stimulation has been applied in motor disorders and has been 

demonstrated to be of prognostic value in congenital hemiplegia [7-9]. 

 Spina bifida is a congenital malformation of the nervous system, which 

causes considerable motor impairment and disability. This disability mainly 

depends on the neonatal neurological deficit [10]. This neurological deficit 

reflects the integrity of motor pathways over and under the spinal lesion and  

is traditionally assessed by neurological examination. Nevertheless, precise 

determination the motor deficit might be difficult in newborn infants with spina 

bifida. Electromyography and nerve conduction studies have been described 

[11,12], but valid additional instruments to assess the motor deficit in newborn 

infants with spina bifida are unavailable. However, magnetic stimulation seems 

an appropriate tool to evaluate the integrity of motor pathways over and caudally 

from the spinal anomaly. Therefore, this study investigated the applicability of 

magnetic stimulation in newborn infants with spina bifida in order to find an 

additional tool to quantify motor deficit. We hypothesize that upper and lower 

motor neurons are present after birth and that the integrity of them can be 

assessed by magnetic stimulation. The clinical value, methodological aspects, 

and implications of magnetic stimulation for the pathophysiology of spina bifida 

will be discussed in this chapter.

Methods

Subjects
Thirteen newborn infants (7 boys and 6 girls) with spina bifida, born at or referred 

to the Radboud University Nijmegen Medical Centre between January 1, 2002 

and December 31, 2003 were enrolled in the study. Patient characteristics are 

listed in Table 1. Birth weight was normal in most newborns. Two infants were 

born premature at a gestational age of 35 and 37 weeks. The spinal anomalies were 

classified as myelomeningocele (7), myelocele (3), lipomyelomeningocele (1) and 

Chapter 2 Responses to lumbar magnetic stimulation in newborns with spina bifida

2



34 35

analysis. MEPs were recorded bilaterally from the quadriceps femoris muscle 

and the tibialis anterior muscle using surface electrodes and an Oxford Synergy 

electromyograph (band-pass filter 20 Hz and 3 kHz, amplifier range 100 mV and 

display sensitivity of 0.5 mV/division). Compound muscle action potentials 

(CMAPs) were obtained from the tibialis anterior muscle by supramaximal 

percutaneous electrical stimulation of the peroneal nerve at the lateral popliteal 

fossa as controls. Onset latencies and peak-to-peak amplitudes were measured 

(Figure 1). As the measured values were not normally distributed, Spearman 

rank-order correlations were calculated to ascertain left-to-right correlation for 

latency and amplitude using statistically package SPSS 10.0.

Results

All subjects tolerated magnetic stimulation without discomfort. An overview of 

the MEPs is shown in Table 2. Lumbar magnetic stimulation resulted in both 

quadriceps femoris MEPs and tibialis anterior MEPs in most subjects (11/13).  

In one subject only tibialis anterior MEPs were obtained, and in another  

subject only quadriceps femoris MEPs were obtained. Control tibialis anterior 

CMAPs after electrical stimulation of the peroneal nerve were congruent with 

tibialis anterior MEPs after lumbar magnetic stimulation: when lumbar magnetic 

stimulation did not lead to a reponse, neither did electrical stimulation. In contrast 

occult spinal dysraphism (2). The median age at investigation was two days (range 

1-15 days). At time of investigation, the perinatal period was uneventful for all 

subjects. The study protocol was approved by the local Committee on Human 

Research.

Neurophysiological assessment
In all subjects, magnetic stimulation was performed by the same researcher (J.P.) 

using a Magstim 200 magnetic stimulator and 90 mm circular coil (outer 

diameter 130 mm, inner diameter 50 mm). The procedure took place before 

surgical closure of the spinal anomaly. Magnetic stimulation (100% intensity) of 

the motor cortex (transcranial) and the lumbar nerve roots was performed in 

prone position with the coil positioned tangentially over the vertex and over the 

lumbar spine, respectively. For each muscle, magnetic stimulation was repeated 

several times with little variation in coil position in search of the best 

reproducible MEPs. The MEP with the highest amplitude was used for further 
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2Table 1  Patient characteristics (n=13)

Gender
 Boy
 Girl 

7
6

Gestational age
 ≤ 37 weeks
 38 – 42 weeks

2
11

Birth weight
 < 2500 gm
 2500 – 4000 gm
 > 4000 gm

1
11

1

Spinal anomaly 
 Myelomeningocele
 Myelocele
 Lipomyelomeningocele
 Occult spinal dysraphism

7
3
1
2

Cerebral co-morbidity on MRI a

 Hydrocephalus
 Chiari II malformation

9
10

Level of motor deficit
 Cranial to L2
 L2 – S1
 Caudally to S1

5
5
3

a  Besides Hydrocephalus and Chiari II malformation no other major intracranial abnormalities  

were present

Figure 1   Motor evoked potential recorded from quadriceps femoris muscle after 

lumbar magnetic stimulation. Asterisk indicates stimulus artifact. 
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to lumbar magnetic stimulation, transcranial magnetic stimulation did not result 

in MEPs in any of the subjects.

 Figure 2 depicts the distributions of latency and amplitude. In all cases, the 

tibialis anterior latency was longer after lumbar magnetic stimulation than 

after electrical stimulation and the tibialis anterior latency was longer than the 

quadriceps femoris latency after lumbar magnetic stimulation. In contrast to the 

distributions of latency, the distributions of amplitude were broad and they all 

covered the same range. In all subjects except three, the tibialis anterior 

amplitude was higher after electrical stimulation than after lumbar magnetic 

stimulation. Despite a broad distribution, the left-to-right correlation for 

amplitude was strong and statistically significant in all target muscles both 

after electrical stimulation (r
tibialis anterior

 = 0.76; p<0.05) and after lumbar magnetic 

stimulation (r
tibialis anterior 

= 0.92; p<0.001 and r
quadriceps femoris

 0.81; p<0.005) (Table 3). 

For tibialis anterior latency after electrical stimulation a left-to-right correlation 

did not exist, but after lumbar magnetic stimulation the correlation coefficient 

was 0.55 (p<0.08) for the tibialis anterior latency and 0.87 (p<0.001) for the 

quadriceps femoris latency.

Discussion 

This study demonstrates that MEPs are obtainable after lumbar magnetic 

stimulation in newborn infants with spina bifida. As magnetic stimulation was 

easily performed and well tolerated without discomfort, lumbar magnetic 

stimulation is considered to be applicable in newborn infants with spina bifida. 

Remarkably, MEPs could be obtained in almost all subjects, even in subjects with 

a severe spinal anomaly and completely paralyzed lower limbs. Only in two 

subjects unilateral MEPs were elicited; no specific difficulties were encountered 
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2Table 2   Responses to magnetic and electrical stimulation in newborn infants 
with spina bifida

Stimulus Stimulus site Target muscle Responses

Magnetic Lumbar roots TA +  +b -

Lumbar roots QF   +a - +

Motor cortex TA/QF - - -

Electrical Peroneal nerve TA + + -

Number of newborn infants 11 1 1

a One subject demonstrated only responses in the left QF after lumbar stimulation. 
b This subject demonstrated only responses in the left TA after lumbar stimulation

TA, tibialis anterior muscle; QF, quadriceps femoris muscle; 

+, response present; -, no response present

Table 3   Left-to-right correlation for latency and amplitude

Stimulus Stimulus site Target
Muscle

Latency Amplitude n

r P-value r P-value

Magnetic Lumbar roots TA 0.55 0.08 0.92 <0.001 11

Lumbar roots QF 0.87 <0.001 0.81 <0.005 11

Electrical Peroneal nerve TA -0.01 0.98 0.76 <0.05 12

TA, tibialis anterior muscle; QF, quadriceps femoris muscle; r, Spearman’s rho; 

n, number of subjects.

Figure 2   Distributions for latency (A) and amplitude (B); bar indicates range  

and vertical line indicates median value; ES, electrical stimulation;  

MS, magnetic stimulation; TA, tibialis anterior muscle; QF, quadriceps 

femoris muscle. 
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In contrast to lumbar magnetic stimulation, transcranial magnetic stimulation 

did not result in recordable MEPs in the lower limbs. Even in three newborn 

infants who did not demonstrate any loss of motor function and could therefore be 

considered as control subjects, MEPs were absent. These findings are in accordance 

with most other studies. In healthy infants, reliable MEPs after cortical magnetic 

stimulation can not be obtained before the age 4 years, because of the immaturity 

of the brain resulting in high stimulus thresholds [18,19]. This immaturity has its 

consequence in a combination of insufficient synaptogenesis, myelinogenesis, and 

axon thickness [19-21]. In case of spina bifida, it is plausible that the spinal lesion 

and associated cerebral malformations (hydrocephalus, Chiari II malformation) 

also affect cortical excitability and central motor conduction. Our study design 

did not enable us to investigate this. On the other hand, Koh and Eyre [6] were able 

to elicit MEPs after transcranial magnetic stimulation. They used a facilitating 

isomeric muscle contraction to lower the stimulus threshold. In the present study, 

this method of facilitation was not applied. First, it is hardly possible to achieve an 

isomeric muscle contraction in newborn infants with paralyzed lower limbs. 

Second, an isomeric muscle contraction could confound the results for latency and 

amplitude through different levels of facilitation [22]. Because of the impossibility 

to obtain responses after transcranial magnetic stimulation in newborn infants, 

conclusions about motor nerve conduction over the spinal anomaly and regarding 

upper motor neuron function cannot be drawn.

 In this explorative study, we looked for reproducible MEPs, but only the MEP 

with the highest amplitude was recorded. Although the amplitude depends on 

the number of axons stimulated, the direction of the current in the coil, and the 

lumbar level of stimulation [13], a strictly defined coil position was not applied 

for two reasons. First, the abnormal spinal anatomy, in some cases large celes, 

hampers precise positioning. As a result of the abnormal anatomy, the segmental 

innervation is deviant resulting in an abnormal course of the nerve roots exiting 

the spinal column. Therefore, it is impossible to stimulate every subject at the 

same neurosegmental motor level. Second, the relatively large magnetic field in 

relation to the body proportions of a newborn infant means that variation in coil 

position will be of little influence on the MEPs. Moreover, this influence only 

involves the amplitude and not the latency [13]. Therefore, using the MEPs with 

the highest amplitude might be the best method to obtain a certain consistency, 

allowing comparison of findings between subjects. 

 In some infants, magnetic stimulation was also performed with a smaller 

circular coil (diameter 70 mm) and with a figure-of-eight coil (double 70 mm). 

Although not systematically evaluated, the stimulus threshold was lower using 

the 90 mm circular coil, and MEPs elicited with this coil seem to have higher 

amplitudes and to yield better reproducibility. This is in contrast with other 

in stimulating these subjects, neither did these unilateral MEPs correspond to an 

extreme asymmetric motor deficit at neurological examination. The presence of 

MEPs in almost all subjects implies that excitable neural tissue is present at or 

caudally from the spinal anomaly, even in case of completely paralyzed lower 

limbs. In normal subjects, excitation after lumbar magnetic stimulation occurs 

at the point where motor nerve roots leave the intervertebral foramina. At this 

point, the magnetic field focuses and the stimulus threshold is low [13-15]. 

Because the configuration of the spinal column insulates the spinal cord, it is 

impossible to stimulate the spinal cord directly [13]. In case of spina bifida, this 

insulation is mostly absent and the neuroplacode is exposed to the surface. In 

addition, the stimulus threshold of the exposed neuroplacode is probably lower 

than the threshold of covered spinal cord in normal infants. Therefore, excitation 

might occur at the neuroplacode and thus at the spinal cord directly in newborn 

infants with spina bifida. 

 Despite not knowing where excitation occurs exactly, the recorded MEPs 

prove that the integrity of lower motor neurons is at least partly preserved after 

birth. In accordance to this, Stark and Drummond [11] reported findings from 

electromyography and nerve conduction studies consistent with preserved lower 

motor neuron activity within 13 hours after birth. In contrast, Sival et al. [12] 

suggested lower motor neuron damage owing to the presence of denervation 

potentials and the disappearance of lower limb movements within 48 hours 

after birth. In the present study, needle electromyography was not performed to 

demonstrate denervation potentials, but the results indicate that lower motor 

neuron activity is demonstrable in most newborn infants after 48 hours of age, even 

if corresponding movement patterns are absent. These findings are supported by 

neuropathological studies [16,17]. In spina bifida, lower motor neurons are 

present at several levels in the spinal anomaly, and anterior nerve roots extend 

from the anterior horn cells at the proper position in the malformed spinal cord 

innervating corresponding muscles. Furthermore, the presence of lower motor 

neurons can be explained from the pathogenesis of spina bifida. According to the 

paradigm that spina bifida results from an incomplete fusion of the dorsal side 

of the neural tube, the ventral plate of the neural tube is probably less affected 

than the dorsal plate. Therefore, anterior horn cells are still able to develop and 

grow into the lower limbs. The current study shows that the lower motor neurons 

present at neuropathological examination also have, to some extend, functional 

qualities at neurophysiological examination. The clinical significance of these 

findings is matter of further study. As magnetic stimulation has proven to be of 

prognostic value in other neurological disorders [7-9], we hypothesize that the 

obtained MEPs might have a prognostic significance toward the outcome of spina 

bifida. 
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reports in which the focal magnetic field produced by the figure-of-eight coil 

results in a higher amplitude [23,24]. To achieve this, the magnetic field has to be 

focused on the point where excitation occurs. In spina bifida, the spinal anatomy 

is deviant and the point of excitation may differ from subject to subject. 

Therefore, the focal aspect of the figure-of-eight coil might hamper adequate 

stimulation in spina bifida. The larger and less focal magnetic field generated by 

the 90 mm circular coil makes recurrent stimulation with equal intensity easier 

to perform. 

 The reliability of the results is supported by the latencies assessed. The 

distributions of latency, which are shown in figure 2, are narrow and they are in 

accordance with the distances between point of stimulation and point of 

recording. These narrow distributions agree with results from other studies 

[13-15]. On the other hand, the distributions of amplitude are broad, which is 

also in accordance with results from other studies. In addition, the reliability is 

supported by the results of electrical peroneal nerve stimulation. If lumbar 

magnetic stimulation did not reveal a response, neither did electrical stimulation. 

This strongly suggests that false negative MEPs after lumbar magnetic stimulation 

are unlikely. Furthermore, a strong left-to-right correlation existed, especially for 

the amplitude. Because both sides were investigated separately, this correlation 

could not be based on simultaneous stimulation of left and right muscle. For the 

tibialis anterior latency after electrical stimulation, this correlation was not 

found. The short distance between point of stimulation (popliteal fossa) and 

point of recording (tibialis anterior muscle), which is the shortest distance of all 

stimulus-response-combinations, could be an explanation. The short distance may 

result in large measurement errors, which might hamper proving a left-to-right 

correlation.

 In conclusion, lumbar magnetic stimulation is applicable in newborn infants 

with spina bifida. Excitable neural tissue is present at or caudally from the spinal 

anomaly. Although current concepts regarding spina bifida suppose lower motor 

neuron dysfunction, our results suggest that lower motor neuron integrity is at 

least partly preserved after birth. Transcranial magnetic stimulation does not 

lead to MEPs in healthy newborn infants because of insufficient synaptogenesis, 

myelinogenesis and axon thickness. Therefore, conclusions on upper motor 

neuron function in neonatal spina bifida cannot be drawn. Magnetic stimulation 

might have additional value to the clinical assessment of spina bifida. However, 

to what extend our method brings closer our initial aim to quantify motor 

impairment, is a matter of further study.
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Abstract

The aim of this study was to investigate the relationship between compound 

muscle action potentials (CMAPs) and neurological impairment in newborn 

infants with spina bifida. Thirty-one newborn infants (17 males, 14 females, 

mean gestational age 39 weeks [SD 2]; mean birth weight 3336 grams [SD 496]) 

with spina bifida were investigated at a median age of 2 days (range 1-18 days). 

Motor and sensory impairment and muscle stretch reflexes were assessed and 

neuroimaging was performed. CMAPs were recorded from the tibialis anterior 

muscle and the gastrocnemius muscle after percutaneous electrical nerve 

stimulation. CMAPs were obtained in almost all infants. The area under the 

curve of the CMAP (CMAP area) was associated with motor and sensory 

impairment and with the presence of muscle stretch reflexes, but not with the 

morphological level of the spinal anomaly. These associations were stronger for 

the gastrocnemius muscle than for the tibialis anterior muscle. In conclusion, 

the CMAP area correlates with neurological impairment in neonatal spina bifida 

and provides an estimate of residual lower motor neuron function in affected 

spinal segments. The assessment of CMAPs after percutaneous electrical nerve 

stimulation is recommended as an additional instrument to the clinical neurological 

examination and imaging studies. 

Introduction

Spina bifida is a congenital malformation of the nervous system, which usually 

results in severe disabilities [1-4]. These disabilities mainly depend on neonatal 

neurological impairment, especially on sensory impairment [5]. Traditionally, 

neurological impairment is assessed by clinical examination, but the clinical 

neurological examination of a newborn infant with spina bifida may be complex 

and to a certain extent subjective. Potentially confounding factors are inconsis-

tencies between patterns of muscle activity and neurosegmental innervation [6], 

the distinction between normal lower limb movements and purely reflex lower 

limb movements [7], and changing movement patterns in the first week of life [8]. 

In the past few years, neuroimaging is performed in most centers as well, but the 

morphological level of the spinal anomaly is only partly related to the neuro - 

logical impairment [1,8,9]. An additional instrument that provides objective 

information about neurological impairment is desirable and may improve 

preoperative clinical decision-making in newborn infants with spina bifida. 

 Motor nerve conduction study may be an appropriate additional diagnostic 

instrument as it provides a diagnostic guide in several disorders [10]. Previously, 

we reported on the presence of compound muscle action potentials (CMAPs) in 

lower limb muscles after percutaneous electrical nerve stimulation in almost all 

newborn infants with spina bifida [11]. Therefore, the presence of a CMAP as such 

is of no diagnostic use, but the magnitude of the CMAP, which reflects the 

number and size of the activated motor units, may be of diagnostic value.

 The aim of the present study was to investigate the association between the 

magnitude of the CMAP, as represented by the area under the curve (CMAP area), 

and neurological impairment in newborn infants with spina bifida considering 

a potential diagnostic value of the CMAP. We hypothesized that a larger CMAP 

area is associated with less neurological impairment. The clinical value, 

methodological aspects, and pathophysiological considerations are discussed.

Method

Participants
Thirty-one newborn infants (17 boys, 14 girls) with spina bifida born at or 

referred to the Radboud University Nijmegen Medical Centre were enrolled in 

the study. Fourteen of these children were diagnosed antenatally. Most infants 

were born at term (mean gestational age 39 weeks [SD 2]) and had a birth weight 

appropriate for gestational age. The mean birth weight was 3336 grams (SD 496) 

with a SD score to the population norm of 0.9. The mean head circumference was 
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measurements between these subgroups were analyzed using the Mann-Whitney 

U test or the Fisher exact test. In order to allow statistical tests, the scores for 

motor and sensory impairment and morphological level were consecutively 

numbered from 1 (T1) to 22 (S5). These variables were handled as continuous 

variables. In addition, the scores for motor impairment were dichotomized 

according to the spinal segmental innervation of the investigated muscles. This 

dichotomy was achieved by dividing the variable for both muscles separately 

into impairment cranial to the spinal segments innervating the muscle or 

impairment at or caudal to these segments. For that purpose the spinal segmental 

innervation according to Sharrard [13] was applied. This resulted in dichotomi-

zation for the tibialis anterior muscle into above L4 and from L4 downward and 

for the gastrocnemius muscle into above S1 and from S1 downward. The CMAP 

measurements were summarized in box plots to show similarities, differences, 

and associations between CMAP and impairment measurements. Associations 

between CMAP and impairment measurements were further analyzed with 

Spearman rank correlation coefficients and in case of dichotomous variables 

with the Mann-Whitney U test. In addition, the CMAP area data were logistically 

transformed to generate approximately normal distributions. Multivariable 

linear regression analyses were then performed for the subgroup in which both 

muscles were investigated. In these analyses, motor and sensory impairment 

were defined as dependent variables and the CMAP areas as independent 

variables. Statistical analyses were performed using SPSS version 14.0.

35.6 cm [SD 2.8] with a SD score to the population norm of -0.3. At the time of 

investigation, the perinatal period was uneventful for all infants. The Regional 

Committee on Research involving Human Subjects approved the study protocol. 

Informed consent was obtained from all parents.

Clinical assessment
The clinical assessment was performed before surgical closure of the spinal 

anomaly and was based on repeated physical examinations, and brain and spinal 

cord MR imaging within 72 hours after birth. Motor impairment was assessed on 

each side separately and scored according to the lowest spinal segment with lasting 

non-stereotypical, non-reflex lower limb movements. Where motor impairment 

was thoracic, we did not attempt to assign it to a single spinal segment, because 

we considered this as too inaccurate. Sensory impairment was assessed on each 

side separately and scored according to the lowest dermatome with a behavioral 

reaction to pin prick. Muscle stretch reflexes were scored as present or absent.  

On MR images, the spinal anomaly was classified according to Tortori-Donati  

et al. [12] and its morphological level and its size was described by identifying  

the cranial and caudal margins of the spinal anomaly with the corresponding 

vertebra. Cerebral comorbidity was assessed by the presence or absence of hydro-

cephalus, Chiari II malformation, and corpus callosum dysgenesis. 

Neurophysiologial assessment
The neurophysiological assessment took place at a median age of two days (range 

1-18 days) before surgical closure of the spinal anomaly. The same assessor 

performed the procedure in all infants. CMAPs were obtained from the tibialis 

anterior and the gastrocnemius muscle by supramaximal percutaneous electrical 

stimulation of the peroneal and the posterior tibial nerve, respectively, at the 

popliteal fossa. CMAPs were recorded using surface electrodes (tendon-belly 

montage) and an Oxford Synergy electromyograph (Oxford Instruments, Old 

Woking, Surrey, UK; band-pass filter 20 Hz and 3 kHz, amplifier range 100 mV, 

and display sensitivity of 0.5 mV/division). The latency was measured from the 

stimulus artifact to the onset of the first negative deflection of the CMAP. The 

area under curve of the first negative wave was calculated as a measure of the 

magnitude of the CMAP (Figure 1). Measurements of the gastrocnemius muscle 

were obtained in only 18 newborn infants as it was added to the protocol later 

during the investigation.

Analysis
As the gastrocnemius muscle was added to the protocol later, two subgroups 

were present in our study. Possible differences in clinical impairment and CMAP 

Chapter 3 Compound muscle action potentials in newborn infants with spina bifida

3

Figure 1   Measurements of the compound muscle action potential. Asterisk 

indicates stimulus artifact. 
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Results

Clinical impairment
The clinical impairment measurements of the investigated newborn infants are 

summarized in Table 1. In the 31 infants included in the study, motor impairment 

was thoracic in 10 infants, lumbar in 14, sacral in seven, and clearly asymmetrical 

in four infants. Sensory impairment was thoracic in six infants, lumbar in 15, 

sacral in 10, and clearly asymmetric in five infants. The patellar reflex was 

present in 15 infants, the Achilles reflex was present in six of these 15 infants, 

and in one infant the Achilles reflex was present and the patellar reflex was 

absent. In the remaining 15 infants, both reflexes were absent. Most spinal anomalies 

could be classified as myelomeningocele (n = 23), whereas four anomalies were 

classified as myelocele. The other four anomalies were other types of spina bifida. 

The morphological level was thoracic in six infants, lumbar in 24, and sacral in 

one infant. Most spinal anomalies covered five or more vertebrae. All infants 

with myelomeningocele or myelocele had hydrocephalus and Chiari II mal- 

formation. Corpus callosum dysgenesis was identified in 24 of these infants. 

 Regarding the clinical impairment measurements, no differences were present 

between the subgroup in which only the tibialis anterior muscle was investigated 

and the subgroup in which both the gastrocnemius and the tibialis anterior 

muscle were investigated.

Compound muscle action potentials
The muscles responded to stimulation in almost all infants: for the tibialis 

anterior muscle 26 of the 31, and for the gastrocnemius muscle 15 of the 18 infants. 

When the gastrocnemius muscle did not respond, neither did the tibialis anterior 

muscle. 

 The distributions of the CMAP latency and the CMAP area are depicted in 

Figure 2. Regarding the tibialis anterior latency and CMAP area, no differences 

were present between the subgroup in which only the tibialis anterior muscle 

was investigated and the subgroup in which both the gastrocnemius muscle and 

the tibialis anterior muscle were investigated.

Associations between CMAP and clinical impairment
We found strong associations between the CMAP area and motor and sensory 

impairment, and muscle stretch reflexes (i.e. the less the impairment, the larger 

the CMAP area). No associations were found between latency and impairment, 

between CMAP measurements and morphological characteristics of the spinal 

anomaly or between CMAP measurements and cerebral comorbidity (hydrocephalus, 

Chiari II malformation, and corpus callosum dysgenesis).
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Table 1  Impairment measurements (n=31)

Impairment Number

Motor impairment

Thoracica 10

Lumbarb 14

Sacral 7

Sensory impairment

Thoracicc 6

Lumbard 15

Sacral 10

Muscle stretch reflexes

Both reflexes absent 15

Patellar reflex present, Achilles reflex absente 9

Achilles reflex presente 7

Type of spinal anomaly

Myelomeningocele 23

Myelocele 4

Lipomyelomeningocele 1

Meningocele 1

Other type of closed spina bifida 2

Cranial margin of spinal anomaly

Thoracic 6

Lumbar 24

Sacral 1

Size of spinal anomaly

≥ 10 vertebrae 4

7-9 vertebrae 9

5-6 vertebrae 14

< 5 vertebrae 4

Cerebral co-morbidity

Hydrocephalus 27

Chiari II malformation 27

Corpus callosum dysgenesis 24

a Two asymmetric (L1-Th; Th-L2)
b Two asymmetric (L5-S1; S1-L5)
c One asymmetric (Th12-L1) 
d Four asymmetric (L2-L3 [2]; L4-L5; L5-S2)
e One asymmetric

L, lumbar; Th, thoracic
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The associations between the CMAP area and the muscle stretch reflexes are 

presented in Figure 3. The CMAP areas of both muscles were almost negligible 

when both reflexes were absent. The gastrocnemius CMAP area was considerably 

larger when the patellar reflex was present and even larger when the Achilles 

reflex was present as well. This applied to a lesser extent to the tibialis anterior 

muscle: the CMAP area was slightly larger when the patellar reflex was present, 

but did not increase any further when the Achilles reflex was present as well. 

 The associations between the CMAP area and motor and sensory impairment 

are specified in Figure 4. Correlation coefficients for these associations are presented 

in Table 2. The associations were stronger for motor impairment than for sensory 

impairment, but both associations were clearly stronger than the weak 

associations between the CMAP area and the morphological level of the spinal 

anomaly. These findings applied in particular to the gastrocnemius muscle and 

to a lesser extent to the tibialis anterior muscle.

 The analyses concerning motor impairment as a dichotomous variable are 

illustrated in Figure 5. This figure clearly shows that the CMAP areas of both the 

gastrocnemius and the tibialis anterior muscle were statistically significantly 

larger when motor impairment was at or caudal to the spinal segmental innervation 
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Figure 2   Distribution of CMAP latency (A) and CMAP area (B). The horizontal 

bar, upper and lower borders of each box mark median, 25th, and 75th 

percentiles, respectively. Error bars mark 5th and 95th percentiles. 

Points lie beyond 5th and 95th percentiles. CMAP, compound muscle 

action potential; CMAP area, area under the curve of the first negative 

wave of the CMAP. 

Figure 3   Associations between CMAP area and muscle stretch reflexes. Data are 

expressed as described for Figure 2. As the results for both sides were 

almost identical, only data for the right side are presented. CMAP 

area, area under the curve of the first negative wave of  the compound 

muscle action potential; AR, Achilles reflex; PR, patellar reflex; plus 

sign indicates reflex present; minus sign indicates reflex absent. 
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Table 2   Spearman rank correlation of CMAP area with motor and sensory 
impairment and morphological level of the spinal anomaly

CMAP area Motor 
impairment

Sensory 
impairment

Level of the spinal 
anomaly

Right Left Right Left Right Left

Gastrocnemius, n=15 0.78*** 0.70*** 0.42 0.58** 0.11 0.14

Tibialis anterior, n=26 0.46** 0.34* 0.36* 0.30 0.21 0.20

* p<0.10; ** p<0.05; *** p<0.01.

CMAP area, area under the curve of the first negative wave of the compound muscle action potential
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of the muscle in question, than when motor impairment was cranial to these 

segments.

 Multivariable linear regression analyses showed that the CMAP areas of both 

muscles together were a better predictor for motor impairment than for sensory 

impairment. In all analyses, the gastrocnemius CMAP area determined the 

majority of the predictive value for motor and sensory impairment (Table 3).

Discussion

The present study shows strong associations between the CMAP and the severity 

of spina bifida in newborn infants. To be more specific, the magnitude of the 

CMAP, represented by the area under the curve, relates to the presence of muscle 

stretch reflexes and motor impairment, and to a lesser degree to sensory 

impairment. To our best knowledge, this has not been reported before. Although 

other authors reported motor nerve conduction studies in neonatal spina bifida 

[14,15], the magnitude of the CMAP was mentioned in only one study [16]. 

Compatible with our results, other authors also reported responses to be present 

in almost all assessed muscles. This is also compatible with studies using other 
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Figure 4   Associations between CMAP area and motor impairment (A) and sensory 

impairment (B). As results for left side were almost identical, only data 

for right side are presented. CMAP area, area under the curve of the 

first negative wave of the compound muscle action potential; L, 

lumbar; Th, thoracic. 

Figure 5   Associations between CMAP area and motor impairment. Data are 

expressed as described for Figure 2. As the results for both sides were 

almost identical, only data for the right side are presented. Motor 

impairment was dichotomized according to segmental innervation of 

gastrocnemius muscle (A) and tibialis anterior muscle (B), respectively 

(see text for details). CMAP area, area under the curve of the first 

negative wave of the compound muscle action potential; L, lumbar; 

Th, thoracic; p, P-value based on Mann-Whitney U test.
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Table 3   Results of multivariable linear regression for CMAP area predicting 
motor and sensory impairmenta (n=15)

Step Predictor CMAP area Right Left

R2 P-value R2 P-value

Motor impairment

1 GC 0.52 0.004 0.67 <0.001

2 GC-TA 0.60 0.01 0.73 0.001

Sensory impairment

1 GC 0.33 0.03 0.16 0.15

2 GC-TA 0.34 0.10 0.24 0.22

a  CMAP area data were transformed logistically. CMAP area, area under the curve of the first negative 

wave of the compound muscle action potential; GC, gastrocnemius muscle; TA, tibialis anterior 

muscle; R2, coefficient of determination
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neurological impairment only partly relates to the morphological abnormalities 

in spina bifida [9].

 In all analyses the gastrocnemius CMAP area seems much more specific for 

neurological impairment than the tibialis anterior CMAP area. This might be 

due to the smaller variability in the tibialis anterior CMAP area compared to the 

variability in the gastrocnemius CMAP area (Figure 2). Considering the spinal 

segmental organization and the distribution of impairment levels within our 

study group, the tibialis anterior muscle is usually less affected than the 

gastrocnemius muscle. Furthermore, the ability to recruit motor neurons from 

spinal segments cranial to the spinal anomaly applies more to the tibialis 

anterior muscle than to the gastrocnemius muscle. 

 Clear associations exist between the presence of muscle stretch reflexes and 

the CMAP area with differences between the two muscles (Figure 3). The 

neurosegmental association between the gastrocnemius muscle and the Achilles 

reflex, and the partial neurosegmental association between the tibialis anterior 

muscle and the patellar reflex may cause this difference. The difference in CMAP 

area between the two muscles when the Achilles reflex is present, can be 

explained by a difference in muscle volume. Furthermore, the association 

between the gastrocnemius CMAP area and the presence of the Achilles reflex 

suggests that non-excitability of a reflex results from an insufficient amount of 

functioning efferent motor neurons, rather than from an interrupted reflex arc. 

For infants in whom the Achilles reflex could not be elicited, a CMAP was still 

obtainable. This proves the integrity of efferent neurons. Evidence for the 

integrity of afferent neurons is provided by Sival et al. [8].

 In spina bifida, both upper and lower motor neuron dysfunction might be 

present. To what extent the upper or the lower motor neuron determines the 

neurological impairment remains a matter of debate [8,14]. The CMAP area provides 

an estimate of the residual lower motor neuron function in affected spinal segments. 

The association between the CMAP area and motor impairment shows that this 

residual function decreases when more cranial spinal segments are involved in 

motor impairment. This suggests a cranio-caudal gradient (i.e. a cranio-caudal 

decrease) in lower motor neuron function in the affected spinal segments. This 

gradient might be related to the degree of upper motor neuron function. In normal 

neurodevelopment, the upper motor neuron is involved in the activity dependent 

regulation of the development of the lower motor neuron, as described by Eyre et al. 

[24]. In spina bifida, the upper motor neuron must pass through disordered spinal 

segments to synapse to the lower motor neuron in affected spinal segments. In 

longer tracts, the integrity of the upper motor neuron is more vulnerable than in 

shorter tracts. This might result in a more definite underdevelopment of lower 

motor neurons in affected caudal segments than in affected cranial segments. 

methods of stimulation, such as electrical neural plaque stimulation [14,17], 

faradic muscle stimulation [18,19], and lumbar magnetic stimulation [11]. The 

presence or absence of a response cannot be a diagnostic criterion, when 

responses are present in virtually every case. The results in the present study 

demonstrate that the CMAP area is indeed distinctive and that it may provide an 

additional measure for neonatal neurological impairment. A larger CMAP area is 

associated with less neurological impairment. 

 Before further interpreting the results, some methodological remarks have 

to be made. To quantify the magnitude of the CMAP, the area under the curve of 

the first negative wave was calculated. The CMAP area provides an estimate of 

the amount of functioning motor units [20]. The area was taken instead of the 

more commonly used amplitude, because the amplitude is more liable to 

temporal dispersion resulting in a larger variability in the amplitude compared 

to the area [21,22]. As additional temporal dispersion due to abnormal myelination 

can be expected in pathological neurons, the CMAP area was considered to 

reflect the amount of activated motor units most appropriately. 

 In addition, our assessment of neurological impairment needs consideration. 

We assessed three modalities of neurological impairment (muscle stretch 

reflexes, motor and sensory impairment). These modalities are to a certain extent 

interdependent, but each modality can be affected to a different degree. No 

consensus exists about which modality is most specific or reliable for determining 

neurological impairment. Therefore, we used all three modalities in the analyses. 

The cranial demarcation of impairment to a single spinal segment may be 

arbitrary. However, more reliable methods are not available [23] and categorization 

of impairment as thoracic, lumbar, or sacral was not specific enough considering 

the aim of the study. 

 Contrasting our findings to CMAPs obtained from healthy newborn infants 

might be interesting from a pathophysiological point of view. However, valid 

normative data are not available. To subject healthy newborn infants to neuro-

physiological examinations as applied in the present study, for merely scientific 

reasons might be considered as ethically unacceptable, as the main aim of our 

study was to differentiate mildly affected from severely affected infants. That 

aim, unlike the differentiation from the healthy state, requires only data of 

affected infants. 

 The CMAP area was most strongly associated with motor impairment and 

with the presence of muscle stretch reflexes, but less strongly with sensory 

impairment. This difference is plausible, as the CMAP above all represents motor 

function. However, the association with sensory impairment was more 

pronounced than the association between the CMAP area and the morphological 

level of the spinal anomaly. This is in accordance with the assumption that the 
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The results on motor impairment as a dichotomous variable show that a large 

CMAP area is related to normal lower limb movements and a small CMAP area to 

paralysis, considering our method to assess motor impairment (Figure 5). The 

presence of normal movements denotes that the upper motor neuron integrity is 

at least partially preserved. This implies that the CMAP area also provides 

indirect information about the degree of upper motor neuron function in spina 

bifida. 

 The above-mentioned considerations imply that the demarcation of motor 

impairment to spinal segments is a simplification of the actual impairment, 

because residual motor function is present in affected spinal segments caudally 

from this demarcation. This residual function might explain the disagreement 

between patterns of muscle activity and neurosegmental innervation, as 

described by McDonald et al. [6]. Evaluation of the residual motor function by 

assessment of the CMAP area may provide a more precise estimate of motor 

impairment. Since the method as used is easy to perform and well tolerated, we 

recommend CMAP assessment as an additional instrument in the preoperative 

neonatal assessment of spina bifida. For clinical use, we suggest that the 

assessment of only the gastrocnemius muscle would be sufficient, since this 

muscle is most sensitive. To what extent this method has predictive value for 

neurological impairment and disability in later life requires further follow-up 

study. The present results support the hypothesis that the CMAP area may be 

indicative of neurological impairment at a later age as well and that a larger 

CMAP area may predict a better functional outcome.
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Abstract

The aim of this study was to investigate the relationship between motor evoked 

potentials (MEPs) after lumbar magnetic stimulation and neurological impairment 

in newborn infants with spina bifida. Thirty-six affected newborn infants were 

investigated at a median age of 2 days (range 0-18 days). Motor and sensory 

impairment and muscle stretch reflexes were assessed and neuroimaging was 

performed. MEPs were recorded from the quadriceps, the tibialis anterior, and 

the gastrocnemius muscle after lumbar magnetic stimulation; from the biceps 

brachii muscle after cervical magnetic stimulation; and from all four muscles 

after transcranial magnetic stimulation. Lumbar and cervical magnetic 

stimulation resulted in MEPs in almost all infants, but transcranial magnetic 

stimulation resulted in MEPs in only a few infants. The areas under the curve of 

the MEPs in the lower limb muscles were associated with the presence of muscle 

stretch reflexes and with motor and sensory impairment. These associations 

were strongest for the gastrocnemius muscle. Although lumbar magnetic 

stimulation has its limitations, MEPs measure neurological impairment. These 

MEPs can not substitute the clinical neurological examination, but they may 

provide additional quantitative information about neurological impairment. 

Assessment of the gastrocnemius and quadriceps femoris MEP is suggested. 

Introduction

Spina bifida is a congenital malformation of the nervous system which usually 

results in severe disabilities [1-3]. These disabilities mainly depend on neonatal 

neurological impairment, especially sensory impairment [4]. Traditionally, neuro- 

logical impairment is assessed by physical examination, but the neurological 

examination of a newborn infant may be complex and, to a certain extent, 

subjective. Potentially confounding factors are inconsistencies between muscle 

activity and the neurosegmental innervation [5], the distinction between normal 

and purely reflex movements [6], and changing movement patterns in the first 

week of life [7]. In the past few years, neuroimaging is performed in most centers 

as well, but the morphological level of the spinal anomaly is only partly related 

to neurological impairment [1,7,8]. An instrument that provides additional 

information about neurological impairment is desirable and may improve 

preoperative clinical decision-making in newborn infants with spina bifida.

 Motor evoked potentials (MEPs) after lumbar magnetic stimulation may 

provide this additional information. Magnetic stimulation is a non-invasive method 

to evaluate motor pathways, which has diagnostic value in several disorders 

[9-11]. Previously, we described the feasibility of lumbar magnetic stimulation in 

newborn infants with spina bifida [12]. Studying compound muscle action 

potentials (CMAPs) after percutaneous electrical nerve stimulation, we found 

that the magnitude of the CMAP is related to neurological impairment in 

neonatal spina bifida [13]. In addition, lumbar magnetic stimulation may provide 

a method to investigate muscles that are difficult to access by percutaneous 

electrical nerve stimulation.

 The aim of the present study was to investigate the relationship between the 

magnitude of the MEP, as represented by the area under the curve (MEP area), 

and neurological impairment in newborn infants with spina bifida in light of a 

potential diagnostic value. We hypothesized that a larger MEP is associated with 

less neurological impairment.

Methods

Subjects
Thirty-six newborn infants (22 boys, 14 girls) with spina bifida, born at or 

referred to the Radboud University Nijmegen Medical Centre were enrolled in 

the study. Fifteen of these infants were diagnosed antenatally. Most infants were 

born at term (mean gestational age 39 weeks; SD 1.6 weeks) and had a birth 

weight appropriate for gestational age (mean birth weight 3279 grams; SD 528 
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MEP with the highest amplitude was used for further analysis. Since lower limb 

muscles generally do not respond to transcranial magnetic stimulation before 

the age of four [15,16], this stimulation was performed just two or three times. 

The latency of the MEP was measured from the stimulus artifact to the onset of 

the first negative deflection of the MEP. The area under curve of the first negative 

wave was calculated as a measure of the magnitude of the MEP. Measurements of 

the gastrocnemius muscle were obtained in only 23 infants as this muscle was 

added to the protocol later during the investigation.

Analysis 
As the gastrocnemius muscle was added to the protocol later, our study 

population comprised two subgroups. Possible confounding differences in 

clinical impairment and MEP measurements between these subgroups were 

analyzed using the Mann-Whitney U test or the Fisher exact test. To allow 

statistical tests, the scores for motor impairment, sensory impairment, and 

morphological level were converted to a numeric scale: 1 (Th1), 2 (Th2), 3 (Th3) 

etcetera, until 22 (S5). The mean values, standard deviations, and ranges of the 

MEP measurements were computed to show similarities and differences between 

the assessed muscles. The associations between MEPs and muscle stretch reflexes 

were summarized in box plots. Associations between MEPs and impairment 

measures were further analyzed with the Spearman rank correlation coefficient 

and in case of dichotomous variables with the Mann-Whitney U test. In addition, 

the MEP area data were logistically transformed to generate approximately 

normal distributions. Multivariable linear regression analyses were then 

performed for motor and sensory impairment with the MEP area variables as 

predictors. Statistical analyses were performed using SPSS version 14.0.1.

Results

Clinical impairment
The clinical impairment measurements are summarized in Table 1. Of the 36 

newborn infants included in the study, motor impairment was thoracic in 12 

infants, lumbar in 16, and sacral in eight. In five infants, motor impairment was 

asymmetric. Sensory impairment was thoracic in seven infants, lumbar in 18, 

and sacral in 11. In seven infants, sensory impairment was asymmetric. The 

patellar reflexes were present in 17 infants and the Achilles reflexes in eight of 

these infants, whereas in one infant the Achilles reflexes were present and the 

patellar reflexes were absent. In the remaining 18 infants both reflexes were 

absent. Most spinal anomalies were classified as myelomeningocele (n = 27), and 

grams). The Regional Committee on Research Involving Human Subjects approved 

the study protocol. Informed consent was obtained from all parents.

Clinical assessment
The clinical assessment was performed before surgical closure of the spinal 

anomaly and was based on repeated physical examinations and a brain and 

spinal cord MR imaging within 72 hours after birth. Motor impairment was 

assessed on each side separately and scored according to the lowest spinal 

segment with lasting non-stereotypical, non-reflex lower limb movements. 

Where motor impairment was thoracic, we did not attempt to assign it to a single 

segment, because we considered this as too inaccurate. Sensory impairment was 

also assessed on each side separately and scored according to the lowest dermatome 

with a behavioral reaction on pin prick. Muscle stretch reflexes were scored as 

present or absent. On MR images, the spinal anomaly was classified according to 

Tortori- Donati [14] and its morphological level and size were described by 

identifying the cranial and caudal margin of the spinal anomaly with the 

corresponding vertebra. Cerebral comorbidity was assessed by the presence or 

absence of hydrocephalus, Chiari II malformation, and corpus callosum dysgenesis.

Neurophysiological assessment
The neurophysiological assessment took place at the median age of 2 days (range 

0-18 days) and before surgical closure of the spinal anomaly. In all infants, the 

same assessor performed the procedure using a Magstim 200 magnetic stimulator 

and a 90 mm circular coil (outer diameter 130 mm, inner diameter 50 mm). The 

infants were investigated lying in prone position in an incubator and magnetic 

stimulation was performed through an access on the right side of the incubator. 

Lumbar and cervical magnetic stimulation (100%) was performed with the coil 

positioned over the lumbar and cervical spine, respectively. Transcranial 

magnetic stimulation (100%) was performed with the coil positioned tangentially 

over the vertex. MEPs were recorded during complete relaxation of the muscles 

using surface electrodes (tendon-belly montage) and an Oxford Synergy electro-

myograph (Oxford Instruments, Old Woking Surrey, UK; band-pass filter 20 Hz 

and 3 kHz, amplifier range 100 mV, and display sensitivity of 0.5 mV/division). 

MEPs were recorded bilaterally from the quadriceps femoris, the tibialis anterior, 

and the gastrocnemius muscle after lumbar magnetic stimulation; from the 

biceps brachii muscle after cervical magnetic stimulation; and from all four 

muscles after transcranial magnetic stimulation. The muscles were assessed one 

by one and per muscle, magnetic stimulation was repeated several times with 

slight variation in coil position (including alternation of clockwise and counter-

clockwise current flow in the coil) in search of the best reproducible MEP. The 
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five anomalies were classified as myelocele. The other four anomalies were other 

types of spina bifida (Table 1). The morphological level of the spinal anomaly was 

thoracic in seven, lumbar in 27, and sacral in two infants. Most spinal anomalies 

covered five or more vertebrae. All infants with myelomeningocele or myelocele 

had a Chiari II malformation. Of these infants, 31 had hydrocephalus and 28 had 

corpus callosum dysgenesis.

 Regarding the clinical impairment measurements, no differences were 

present between the subgroup in which only the tibialis anterior and the 

quadriceps femoris muscle were investigated (n = 13) and the subgroup in which 

all three lower limb muscles were investigated (n = 23).

Motor evoked potentials
Lumbar magnetic stimulation resulted in MEPs in the lower limb muscles in almost 

all infants (see Figure 1 for examples). In 27 of the 36 infants, all investigated 

lower limb muscles responded to lumbar magnetic stimulation. In eight infants, 

one or more muscles did not respond. In only one infant, no MEPs were obtained 

in any of the investigated lower limb muscles. Cervical stimulation resulted in 
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Table 1   Clinical impairment measurements in 36 newborn infants with 
spina bifida

Number

Level of motor impairment

Thoracica 12

Lumbarb 16

Sacral 8

Level of sensory impairment

Thoracicc 7

Lumbard 18

Sacral 11

Muscle stretch reflexes 

Patellar and Achilles reflex, both absent 18

Patellar reflex present, Achilles reflex absente 10/9

Achilles reflex presente 8/9

Type of spinal anomaly on MRI

Myelomeningocele 27

Myelocele 5

Lipomyelemeningocele 1

Meningocele 1

Other type of closed spina bifida 2

Cranial margin of spinal anomaly on MRI

Thoracic 7

Lumbar 27

Sacral 2

Size of spinal anomaly on MRI

≥10 vertebrae 4

7-9 vertebrae 10

5-6 vertebrae 18

< 5 vertebrae 4

Cerebral comorbidity on MRI

Hydrocephalus 31

Chiari II malformation 32

Corpus callosum dysgenesis 28

a Two asymmetric (L1-Th12; Th12-L2) 
b Three asymmetric (L1-L2; L5-S1; S1-L5)
c Two asymmetric (Th10-L2; Th12-L1)
d Five asymmetric (L2-L3 [2]; L4-L5; L5-S2; L5-L3)
e One asymmetric 
L, lumbar; Th, thoracic

Figure 1   Motor evoked potentials recorded in lower limb muscles after lumbar 

magnetic stimulation. GC, gastrocnemius muscle; TA, tibialis anterior 

muscle; QF, quadriceps femoris muscle
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MEP area and morphological characteristics of the spinal anomaly, between the 

MEP area and cerebral comorbidity, or between the MEP latency and any of the 

clinical impairment measures. In the biceps brachii muscle, we did not find any 

association between the MEP parameters and clinical impairment measures.

 The associations between the MEP area and the muscle stretch reflexes are 

presented in Figure 2. The three boxes on the left show that the MEP area was 

negligible in all lower limb muscles, when both the patellar and the Achilles 

reflex were absent. Substantial MEP areas were measurable in the quadriceps 

femoris muscle, but not in the other muscles, when only the patellar reflex was 

present. When the Achilles reflex was present, substantial MEP areas were 

obtained in all muscles, in particular in the tibialis anterior and the gastrocnemius 

muscle.

MEPs in the biceps brachii muscle in 31 of the 36 infants. In two infants cervical 

stimulation did not result in a MEP and in three infants cervical stimulation was 

technically impossible due to anatomical impediments (e.g. extreme macro-

cephaly). Transcranial magnetic stimulation rarely resulted in reliable MEPs (in 

two infants, the quadriceps femoris muscle responded and in one infant, the 

biceps brachii muscle responded). 

 The mean values, standard deviations, and ranges of latency and area under 

the curve of the obtained MEPs are presented in Table 2. The quadriceps femoris 

muscle differed from other muscles: shorter latency and larger area, but only the 

shorter latency was statistically significant.

 Regarding the MEP results, no differences were present between the 

subgroup in which only the tibialis anterior and quadriceps femoris muscle were 

investigated (n = 13) and the subgroup in which all three lower limb muscles 

were investigated (n = 23).

Associations between MEP and clinical impairment
In the lower limb muscles, the MEP area was associated with the presence of 

muscle stretch reflexes and with motor and sensory impairment (i.e. the less the 

impairment, the larger the MEP area). No associations were found between the 
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Table 2   Mean values, standard deviations and ranges for latency and area 
under the curve of motor evoked potentials after lumbar magnetic 
stimulation

Muscle Latency (ms) MEP area (mVms) n

Mean SD Range Mean SD Range

GC right 8.8 1.7 6.3-12.4 3.8 5.2 0.1-20.7 19

GC left 9.4 1.6 7.1-12.5 3.0 4.7 0.1-20.9 19

TA right 8.6 1.4 5.6-11.4 3.2 4.8 0.1-19.7 29

TA left 8.6 1.4 4.9-11.4 2.7 3.9 0.1-19.9 31

QF right 5.1 1.3 2.8-8.2 3.7 4.1 0.1-16.6 32

QF left 5.1 1.6 3.4-10.7 4.5 5.5 0.1-19.8 32

BB right 7.5 3.1 3.6-16.5 3.2 3.8 0.1-14.2 30

BB left 7.5 2.9 3.1-15.1 3.7 5.0 0.1-20.9 31

GC, gastrocnemius muscle; TA, tibialis anterior muscle; QF, quadriceps femoris muscle; BB, biceps 

brachii muscle

Figure 2   Associations between MEP area and muscle stretch reflexes. The 

horizontal bar and the upper and lower border of each box mark 

median, 25th, and 75th percentiles, respectively. Error bars mark 5th 

and 95th percentiles. Points lie beyond 5th and 95th percentiles. As the 

results for both sides were almost identical, only data for the right  

side are presented. MEP, motor evoked potential; MEP area, area under 

the curve of first negative wave of the MEP; GC, gastrocnemius muscle; 

TA, tibialis anterior muscle; QF, quadriceps femoris muscle; AR, achilles 

tendon reflex; PR, patellar tendon reflex; +, reflex present; –, reflex 

absent; * p<0.05 based on Mann-Whitney U test.
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The associations between the MEP area and motor and sensory impairment are 

illustrated in Figure 3. Correlation coefficients for these associations are specified 

in Table 3. The associations with sensory impairment demonstrated a cranio- 

caudal gradient (i.e. the more cranial the neurosegmental innervation of the 

muscle the weaker the association), with statistically significant correlation 

coefficients for the gastrocnemius and the tibialis anterior muscle only. 

Surprisingly, the associations with motor impairment were stronger at the right 

side than at the left side. No meaningful associations were found between the 

MEP area and the morphological level of the spinal anomaly.

The multivariable linear regression analyses showed that a model including the 

MEP areas of all lower limb muscles had a predictive value of up to 46 % for 

sensory impairment and up to 34 % for motor impairment. Again, remarkable 

discrepancies between the left and right side were noticed, with the left side 

MEPs not being predictive for motor impairment. In all analyses, the gastro- 

cnemius MEP area determined the majority of the predictive value for motor and 

sensory impairment (Table 4).

Chapter 4 Motor evoked potentials in relation to clinical impairment in neonatal spina bifida
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Figure 3   Associations between MEP area and motor impairment (A) and sensory 

impairment (B). As the results for both sides were almost identical, 

only data for the right side are presented. MEP, motor evoked potential; 

MEP area, area under the curve of first negative wave of the MEP; GC, 

gastrocnemius muscle; TA, tibialis anterior muscle; QF, quadriceps 

femoris muscle; L, lumbar; Th, thoracic 
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Table 3   Correlations (Spearman rank correlation coefficients) between 
MEP area and motor impairment, sensory impairment, and 
morphological level of spinal anomaly

MEP area Motor 
impairment

Sensory 
impairment

Level of 
spinal anomaly

n

Right Left Right Left Right Left

Gastrocnemius 0.66*** 0.38 0.60*** 0.56** -0.18 -0.30 19

Tibialis anterior 0.31 0.26 0.39** 0.35* -0.01 0.00 29/31a

Quadriceps femoris 0.31* 0.22 0.26 0.20 -0.03 -0.05 32

Biceps brachii -0.05 0.04 -0.22 -0.05 -0.17 -0.04 30/31b

* p<0.10; ** p<0.05; *** p<0.01.
a n = 29 on the right side and n = 31 on the left side 
b n = 30 on the right side and n = 31 on the left side 

Table 4   Results of multivariable linear regression for MEP areaa predicting 
motor and sensory impairment (n=18)

Step Predictor MEP area Right Left

R2 P-value R2 P-value

Motor impairment

1 GC 0.33 0.01 0.08 0.25

2 GC-TA 0.34 0.04 0.08 0.52

3 GC-TA-QF 0.34 0.11 0.10 0.69

Sensory impairment

1 GC 0.43 <0.01 0.28 0.03

2 GC-TA 0.46 0.01 0.29 0.08

3 GC-TA-QF 0.46 0.03 0.30 0.17

a MEP area data were logistically transformed

GC, gastrocnemius muscle; TA, tibialis anterior muscle; QF, quadriceps femoris muscle; R2, 

coefficient of determination
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myelination in pathological neurons [24]. To deal with this, we used the area 

under the curve instead of the amplitude to quantify the magnitude of the MEP. 

The MEP area is less liable to dispersion than the amplitude [24,25]. Second, the 

magnitude of the MEP is proportional to the number and size of activated motor 

units [26], but it may vary between and within individuals [27,28]. Lumbar 

magnetic stimulation does not result in the activation of all motor units present 

[27,29] and the magnitude of the MEP depends on the stimulus site and the 

thickness of the intervening tissue between the coil and the motor neurons 

[28,30]. Third, we used surface electrodes instead of needle electrodes to record 

the MEPs, because surface electrodes provide a better representation of the 

amount of activated motor units than needle electrodes. Furthermore, surface 

electrodes are more convenient and non-invasive. However, recordings with 

surface electrodes are prone to crosstalk, i.e. activity generated in muscles adjacent 

to the muscle of interest, which can, through volume spread, contaminate the 

MEP recording [31]. In the current study, some crosstalk was hardly preventable, 

because of relatively large electrodes compared to small body proportions. 

 Despite the limitations mentioned, we found clear associations between the 

magnitude of the MEP and neurological impairment. The results concerning the 

muscle stretch reflexes can easily be explained, since two of the muscles studied 

(gastrocnemius and quadriceps femoris) are the agonistic muscles of the reflexes. 

The MEP areas in these muscles were larger and extended over a broader range 

of values, when the reflexes were present (Figure 2). This suggests that the MEP 

area might provide quantitative information about the reflexes.

 The results on sensory impairment reflect the neurosegmental innervation 

of the muscles studied: the more cranial the neurosegmental innervation of the 

muscle, the weaker the association with sensory impairment. These results are 

compatible with results on CMAPs after percutaneous electrical nerve stimulation 

[13].

 In contrast, the association between the MEP area and motor impairment 

was less definite. This may be explained in several ways. First, the weak 

association on the left side might be a consequence of the assessment position 

during examination. We investigated all infants in an incubator and performed 

magnetic stimulation through an access on the right side. Complicated 

accessibility might have hampered optimal stimulation on the left side. Second, 

considering the neonatal neurological examination, the reliability of muscle 

stretch reflexes and sensory impairment scores might be better than the 

reliability of motor impairment scores. To ascertain the presence of a reflex or a 

behavioral reaction to pin-prick is more straightforward, than ascertaining 

motor impairment based on observed spontaneous lower limb movements and 

distinguishing normal movements from reflex movements. If the MEP area 

Discussion

The present study shows associations between MEPs after lumbar magnetic 

stimulation and neurological impairment in newborn infants with spina bifida. 

The magnitude of the MEP in the lower limb muscles, represented by the area 

under the curve of the first negative wave, relates to the presence of muscle 

stretch reflexes and to motor and sensory impairment. As far as we know, similar 

results on lumbar magnetic stimulation have not been reported before. However, 

these findings are compatible with the associations we found between the CMAP 

after percutaneous electrical nerve stimulation and neurological impairment in 

newborn infants with spina bifida [13]. Other authors also reported motor 

responses to be present in lower limb muscles in almost all infants with spina 

bifida, although using other methods of stimulation, such as percutaneous 

electrical nerve stimulation [17-19], electrical neural plaque stimulation [17,20], 

and faradic muscle stimulation [21,22]. In these studies, only the presence or 

absence of a response was evaluated in relation to clinical impairment. However, 

the presence or absence of a response cannot be a diagnostic criterion, when 

responses are present in virtually every infant. In contrast, the associations 

between the MEP area and neurological impairment in our study show that the 

MEP area is distinctive and that MEPs may provide additional information about 

neurological impairment.

 As opposed to lumbar magnetic stimulation, transcranial magnetic stimulation 

did hardly result in any MEPs. This is in accordance with other studies. In healthy 

infants, the lower limb muscles generally do not respond to transcranial magnetic 

stimulation before the age of four [15,16]. Consequently, direct assessment of the 

corticospinal tract is not possible using this method in newborn infants. The 

almost complete absence of responses after transcranial magnetic stimulation 

on the other hand, implies that the responses after lumbar magnetic stimulation 

are indeed MEPs and not startle responses provoked by the acoustic click that 

accompanies magnetic stimulation. 

 The MEP latency did not relate to neurological impairment. The spread of 

the MEP latency in the lower limb muscles was small, as can be seen from the 

low SDs in Table 2. Moreover, the MEP latency in the quadriceps femoris muscle 

was shorter than the MEP latency in the other muscles, which is in accordance 

with the difference in distances from point of excitation to the site of recording 

between the investigated muscles. Therefore, the MEP latency might be considered 

as relatively unaffected. 

 Before further interpreting the results on the MEP area, some methodological 

remarks have to be made. First, lumbar magnetic stimulation is complicated by 

spatial dispersion [23] and by temporal dispersion which results from abnormal 

Chapter 4 Motor evoked potentials in relation to clinical impairment in neonatal spina bifida
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provides valid information, it is expected to relate better to a reliable instrument 

than to a less reliable instrument. Third, lumbar magnetic stimulation primarily 

activates large diameter motor neurons [23,32] and consequently, the amount of 

small diameter motor neurons is not completely reflected in the MEP. The small 

motor neurons are likely to be more essential in normal lower limb movements 

than in the excitability of muscle stretch reflexes, further explaining the 

differences between motor impairment and muscle stretch reflexes.

 In all analyses, the gastrocnemius muscle was most indicative of neurological 

impairment. Differences in neurosegmental innervation between the muscles 

studied might explain this. Since the gastrocnemius has the most caudal 

neurosegmental innervations, the gastrocnemius muscle was more often 

affected than the other two muscles. Moreover, the ability to recruit motor 

neurons from spinal segments cranial to the spinal anomaly should apply more 

to the quadriceps femoris and the tibialis anterior muscle than to the 

gastrocnemius muscle. The quadriceps femoris muscle may have also more 

potential to compensate for affected segments, because this muscle is multi-seg-

mentally innervated whereas the other muscles are bi-segmentally innervated. 

In our results, the differences between the gastrocnemius and the quadriceps 

femoris muscle (cranial versus caudal innervation) were more pronounced than 

the differences between the tibialis anterior and the quadriceps femoris muscle 

(multi- versus bi-segmental innervation). Therefore, the first explanation seems 

to be most relevant.

 The clinical determination of neurological impairment in newborn infants 

with spina bifida is complex. The demarcation of impairment to spinal segments 

is a simplification of the actual impairment, because residual lower motor neuron 

function is present in affected spinal segments caudally from this demarcation. 

Lumbar magnetic stimulation might be a method to assess this residual function. 

Although this method has its limitations, the present study shows that MEPs 

after lumbar magnetic stimulation measure neurological impairment. These 

MEPs can not substitute the clinical neurological examination, but they may 

provide additional quantitative information about neurological impairment. 

Therefore, for the diagnostic workup of neonatal spina bifida, we suggest the 

assessment of gastrocnemius and quadriceps femoris MEPs after lumbar magnetic 

stimulation as an additional instrument to the clinical neurological examination. 

To what extent MEPs have a predictive value for neurological impairment at a 

later age requires further study. However, we hypothesize that neonatal MEPs 

might be indicative of neurological impairment at a later age.

Chapter 4 Motor evoked potentials in relation to clinical impairment in neonatal spina bifida
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Abstract

Aim The aim of this prospective study was to determine the prognostic value of 

neurophysiological investigations compared to clinical neurological examination 

in infants with spina bifida. 

Methods Thirty-six neonates born with spina bifida between 2002 and 2007 

were evaluated and followed for two years. Lumbar motor evoked potentials 

(MEPs) and compound muscle action potentials (CMAPs) were obtained at the 

median age of two days before surgical closure of the spinal anomaly. MEPs were 

recorded from the quadriceps femoris, tibialis anterior, and gastrocnemius 

muscles and CMAPs from the latter two muscles. Areas under the curve and 

latencies of the MEPs and CMAPs were measured. Clinical neurological outcome 

at the age of 2 years was assessed using muscle function classes and ambulation 

status. 

Results The areas under the curve of MEPs and CMAPs in the lower limbs were 

associated with neonatal levels of motor and sensory impairment. A better 

muscle function class at two years of age was associated with larger MEP and 

CMAP areas of the gastrocnemius and tibialis anterior muscles at neonatal age. 

Discussion MEPs and CMAPs of the gastrocnemius and tibialis anterior muscles 

have some prognostic value for early neurodevelopmental outcome in neonates 

born with spina bifida.

Introduction

Spina bifida is a severe congenital malformation with a prevalence of 1-5 in 

10.000 live births worldwide [1,2]. It is associated with complex physical and neu-

ropsychological morbidity [3,4]. In this century, where choices have to be made 

regarding continuation or termination of treatment of neonates born with spina 

bifida, or regarding new treatment options such as prenatal surgery [5], it is 

important to have instruments to estimate the degree of neurological impairment 

[3,6]. Traditionally, neurological impairment has been assessed by physical 

examination after birth [7,8], but potentially confounding factors are inconsis-

tencies between muscle activity and neurosegmental innervation [9-11], the 

distinction between normal and purely reflex movements [12,13], and changing 

movement patterns during the first weeks of life [11,14,15]. A variety of other 

methods, including prenatal ultrasounds [16], neuroimaging, and neurophysio-

logical evaluation [15], have also been used in an attempt to predict the long-term 

neurodevelopmental outcome of neonates with spina bifida [17,18]. Instruments 

providing additional information about neurological impairment are desirable 

and may improve the preoperative clinical decision-making process in fetuses 

and newborn infants with spina bifida.

 Modern neurophysiological methods, among others, by means of motor evoked 

potentials (MEPs) after magnetic stimulation, may provide this additional information. 

Magnetic stimulation is a non-invasive method to evaluate motor pathways, which 

has diagnostic value in several disorders [19]. Previously, the feasibility of spinal 

magnetic stimulation in newborn infants with spina bifida was reported [20], as 

well as the relation between compound muscle action potentials (CMAPs) and 

early neurological impairment in neonatal spina bifida [21].

 The aim of the present study was to investigate the prognostic value of 

neonatal MEPs and CMAPs for neurological impairment in children with spina 

bifida at two years of age compared to the prognostic value of neonatal clinical 

neurological assessment. 

Methods

Participants
Thirty-six newborn infants (22 boys, 14 girls) with spina bifida, recruited at the 

Radboud University Nijmegen Medical Centre during the period 2002-2007, were 

included in a prospective study. The study protocol was approved by the Regional 

Committee on Research Involving Human Subjects and written informed 

consent was obtained from the parents of all children. Inclusion criteria were 

Chapter 5 Motor evoked potentials and compound muscle action potentials as prognostic tools for neonates...
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[23-25], the area was used as a measure of the magnitude of the MEPs and CMAPs 

(Figure 1). Measurements of the gastrocnemius muscle were obtained in only 23 

infants, as this muscle was added to the protocol later during the investigation. 

Radiological assessment
MR imaging of the whole neural axis was performed in all infants before surgery 

using a 1.5 T MR imaging unit (Siemens Avanto; Siemens Medical Solutions, 

Erlangen, Germany) with a standard head coil. T1-weighted images in the sagittal 

plane and T2-weighted images in the axial and coronal plane were acquired. The 

spinal anomaly was classified as closed or open spinal dysraphism [22]. In 

addition, the presence of Chiari II malformation, hydrocephalus, and callosal 

dysgenesis was assessed. The anatomical level of the spinal anomaly was defined 

by identifying the cranial margin of the spinal anomaly with the corresponding 

vertebra on sagittal T1-weighted images. 

Clinical assessment 

Neonatal assessment 
Clinical neonatal assessment was based on repeated physical examination 

within 72 hours after birth before surgical procedures were performed, as 

neurological impairment may be influenced by surgery [26,27]. All children were 

examined by the same two pediatric neurologists. Motor impairment was 

the presence of a congenital defect of one or more vertebral arches and a 

developmental anomaly of the spinal cord confirmed by magnetic resonance 

(MR) imaging, in combination with a median muscle-skin defect or a cystic or 

lipomatous mass on the back. The congenital anomaly was further specified 

according to the following two characteristics: (1) Type and size of spinal anomaly 

scored with diagnostic codes as closed or open. An open defect, such as a myelo-

meningocele or meningocele, is characterized by exposure of neural tissue or 

meninges to the environment through a congenital defect of vertebral arches.  

A closed defect is covered with skin [22]. (2) Cerebral comorbidity scored as 

hydrocephalus, Chiari II malformation, or corpus callosum dysgenesis based on 

specific MR imaging features. 

 During the study all infants took part in the same rehabilitation program. 

They were seen in our 'spina bifida' follow up outpatient clinic every six months, 

comprising of a permanent multidisciplinary team of doctors, including a child 

rehabilitation specialist, pediatric physio therapist, orthopedic surgeon, and 

pediatric neurologist. The advices of the team were incorporated in the regional 

rehabilitation programs. 

Neurophysiological assessment
Neurophysiological assessment was performed at a median age of two days after 

birth (range 0-18 days) before surgical closure of the spinal anomaly. The infants 

were investigated lying in prone position in an incubator, while MEPs and CMAPs 

were recorded bilaterally from the tibialis anterior and gastrocnemius muscles, 

as well as MEPs from the quadriceps femoris muscle using surface electrodes 

(tendon-belly montage) and an Oxford Synergy electromyograph (Oxford 

Instruments, Old Woking Surrey, UK; band-pass filter 20 Hz and 3 kHz, amplifier 

range 100 mV, and display sensitivity of 0.5 mV/division). Spinal magnetic 

stimulation (100% stimulation intensity) was performed with the coil positioned 

over the lumbosacral spine and was repeated several times with slight variations 

in coil position (including alternation of clockwise and counter-clockwise 

current flow in the coil) in search of the best reproducible MEP. In all infants, the 

same assessor performed the procedure using a Magstim 200 magnetic stimulator 

and a 90mm circular coil (outer diameter 130mm, inner diameter 50mm). The 

MEP with the highest amplitude was used for further analyses. In addition, 

supramaximal percutaneous electrical stimulation of the peroneal and posterior 

tibial nerves was performed at the popliteal fossa to obtain CMAPs in the tibialis 

anterior and gastrocnemius muscles, respectively. The onset latencies from the 

stimulus artifact to the onset of the first negative deflection and the area under 

the curve of the first negative wave of the MEPs and CMAPs were measured. 

Because the area under the curve is less liable to dispersion than the amplitude 

Chapter 5 Motor evoked potentials and compound muscle action potentials as prognostic tools for neonates...
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For the MEP and CMAP measurements, median values and ranges were computed. 

Associations of MEPs and CMAPs with neonatal clinical neurological impairment 

measures were analyzed with Spearman rank correlation coefficients, and 

associations of MEPs and CMAPs with MFCs and ambulation status at two years 

of age were analyzed with the Mann-Whitney U test. Statistical analyses were 

performed using SPSS version 17.0.1. A P-value of less than 0.05 was considered 

statistically significant.

Results

Patients
Infant characteristics (n=36) are presented in Table 1. Fifteen infants were diagnosed 

antenatally. Most infants were born at term (median gestational age 39 weeks; 

range 35-42 weeks) and had a birth weight and head circumference appropriate 

assessed on each side separately and scored according to the lowest intact spinal 

segment with lasting non-stereotypical, non-reflex lower limb movements. 

Sensory impairment was also assessed on each side separately and scored 

according to the lowest intact dermatome, defined as the presence of behavioral 

reactions to pin prick or light touch in this dermatome. 

Outcome assessment at the age of two years
Two outcome measures were assessed at two years of age. First, muscle function 

classes (MFCs) based on muscle strength in the lower limb muscles according to 

McDonald et al. [10] were used as a measure of impairment. Children were 

categorized into one of five MFCs. MFC 1 indicates good to normal intrinsic foot 

muscles and plantar flexion (MRC grade 4-5); MFC 2 indicates weakness of plantar 

flexion (MRC grade ≤ 3), good to normal knee flexion (MRC grade ≥ 3), and poor to 

fair or better hip extension and/or abduction activity (MRC grade ≥ 2); MFC 3 

indicates good to normal hip flexion and knee extension (MRC grade 4-5), 

weakness of knee flexion (MRC grade ≤ 3), and traces of hip extension, hip 

abduction, and below-knee muscles; MFC 4 indicates weak or no knee extension 

with poor or less hip flexion (MRC grade ≤ 2) and good pelvic elevation activity; 

MFC 5 indicates no muscle activity in the lower limbs. As a second outcome 

measure, ambulation was assessed and classified into three categories: (a) 

community ambulation, when walking outdoors, (b) household ambulation, 

when only walking indoor, and (c) non-functional ambulation. 

Statistical analysis
For the analyses, the motor and sensory impairment levels and the anatomical 

levels of the spinal anomalies were converted to a numeric index: 1 for Th1, 2 for 

Th2, etcetera, until 22 for S5. The MFC scores were dichotomized into two groups: 

MFC 1 and 2 as group 1 (mildly impaired subgroup) and MFC 3, 4 and 5 as  

group 2 (severely impaired subgroup), because of expected community ambulation 

for MFC 1 and 2 and only household or non-functional ambulation for the other 

MFCs. Because of possible differences between the left and right side of the body 

for MFC, analyses were performed for each side of the body separately. Ambulation 

was also dichotomized into community ambulation and non-community (house- 

hold and non-functional) ambulation. 

 As measurements of the gastrocnemius muscle were added to the protocol 

later, our study population comprised two subgroups, with and without 

measurements of the gastrocnemius muscle. Possible differences in clinical 

impairment and MEP and CMAP measurements between these subgroups were 

analyzed using the Fisher exact test or Mann-Whitney U test, because of non- 

normal distributions. 
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n

Type of spina bifida

Open spinal dysraphism 33

Closed spinal dysraphism 3

Cerebral comorbidity

Hydrocephalus 30

Chiari II malformation 31

Corpus callosum dysgenesis 28

Anatomical level of spinal anomaly

Thoracic 7

Lumbar 27

Sacral 2

Level of motor impairment

Thoracic 12

Lumbar 16

Sacral 8

Level of sensory impairment

Thoracic 7

Lumbar 18

Sacral 11

n, number of patients
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ranges of the latency and the CMAP area are shown in Table 3. Some differences 

were noticed between the two muscles. The gastrocnemius latencies were slightly 

longer than the tibialis anterior latencies, while gastrocnemius areas were 

smaller than the tibialis anterior areas. The variability in the CMAP area was 

larger for the gastrocnemius muscle than for the tibialis anterior muscle. 

Only slight left-to-right differences were observed for MEP and CMAP parameters, 

but none of these differences were statistically significant. No differences were 

present between the subgroup in which only the tibialis anterior and quadriceps 

femoris muscle were investigated (n = 13) and the subgroup in which all three 

lower limb muscles were investigated (n = 23). Therefore, further analyses pertain 

to the total group of patients, while results are presented for the right side only.

Radiological and clinical assessment
The anatomical level of the spinal anomaly was thoracic in seven infants (19%), 

lumbar in 27 infants (75%), and sacral in two infants (6%). See Table 1. Neonatal 

motor impairment level was assessed as thoracic in 12 infants (33%), as lumbar 

in 16 infants (44%), and as sacral in eight infants (22%). Neonatal sensory 

impairment level was assessed as thoracic in seven infants (19%), as lumbar in 18 

infants (50%), and as sacral in 11 infants (31%). 

Associations between neurophysiological measures and clinical 
and radiological assessment at neonatal age 

The associations between the neurophysiological measures and neonatal clinical 

assessment are shown in Table 4. Lower levels of neonatal motor and sensory 

impairment were statistically significantly associated with larger gastrocnemius 

for gestational age (median birth weight 3245 grams, range 2305-4100 grams; 

median head circumference 35 cm, range 30-46 cm). Most spinal anomalies were 

classified as open spinal dysraphism (n=33). Thirty-one infants (86%) had Chiari 

II malformation, 30 infants (83%) had hydrocephalus, and 28 infants (78%) had 

corpus callosum dysgenesis.

Neurophysiological assessment

Motor evoked potentials
Spinal magnetic stimulation resulted in MEPs in almost all infants. In 27 of the 

36 infants (75%), all investigated lower limb muscles responded to lumbar 

magnetic stimulation. In eight infants (22%), one or more muscles did not 

respond. In only one infant, no MEPs were obtained in any of the investigated 

lower limb muscles. The median values and ranges of the latency and the area 

under the curve of the MEPs obtained are presented in Table 2. The quadriceps 

femoris muscle differed from the other muscles: shorter latencies and mostly 

larger MEP areas were seen, but only the shorter latencies were statistically 

significantly different. 

Compound muscle action potentials
The muscles responded to percutaneous electrical nerve stimulation in almost 

all infants: the tibialis anterior muscle in 31 of the 36 infants (86%) and the 

gastrocnemius muscle in 20 of the 23 infants (87%). If the gastrocnemius muscle 

did not respond, neither did the tibialis anterior muscle. The median values and 
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Table 2  Motor evoked potentials after lumbar magnetic stimulation

Muscle Latency (ms) MEP area (mVms) n

Median Range Median Range

QF right 5.0 2.8-8.2 1.8 0.1-16.6 32

QF left 4.9 3.4-10.7 2.3 0.1-19.8 32

TA right 8.2 5.6-11.4 1.2 0.1-19.7 29

TA left 8.6 4.9-11.4 1.3 0.1-19.9 31

GC right 8.3 6.3-12.4 2.1 0.1-20.7 19

GC left 9.2 7.1-12.5 1.6 0.1-20.9 19

QF, quadriceps femoris muscle; TA, tibialis anterior muscle; GC, gastrocnemius muscle; n, number 

of patients

Table 3   Compound muscle action potential after percutaneous electrical 
nerve stimulation

Muscle Latency (ms) CMAP area (mVms) n

Median Range Median Range   

TA right 2.6 1.8-5.8 6.7 0.3-19.4 31

TA left 2.6 1.8-5.5 4.7 0.2-19.5 31

GC right 3.3 2.5-4.5 4.0 0.0-26.6 19

GC left 3.1 2.1-5.0 3.6 0.0-26.7 20

TA, tibialis anterior muscle; GC, gastrocnemius muscle; n, number of patients
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Associations between clinical and neurophysiological measures at 
neonatal age and outcome measures 
Five children (14%) died before the age of two years and two children (6%) were 

lost to follow up due to emigration. The remaining 29 children were further 

examined. Three children were assigned to MFC 1 (10%), four to MFC 2 (14%), nine 

to MFC 3 (31%), eight to MFC 4 (28%), and five to MFC 5 (17%). Of the 29 children, 

nine children were community ambulators (31%), four were household ambulators 

(14%), and 16 were non-functional ambulators (55%) at the age of two years.

 The associations between the neurophysiological and clinical measures 

assessed after birth and MFC and ambulation status at two years of age are shown 

in Table 5. Lower neonatal motor en sensory impairment levels were seen in the 

and tibialis anterior CMAP areas and with larger gastrocnemius MEP areas, 

whereas these associations were slightly weaker for the quadriceps femoris and 

tibialis anterior MEP areas. Especially for sensory impairment, a cranio-caudal 

gradient was demonstrated for the MEP area: the more cranial the neurosegmental 

innervation of the muscle, the weaker the association seems to be. No meaningful 

associations were found between the latencies and motor or sensory impairment, 

or between any of the MEP or CMAP parameters and the anatomical level of the 

spinal anomaly.
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Table 4   Spearman rank correlation coefficients (r) of MEP and CMAP 
parameters with neonatal neurological impairment and level of the 
spinal anomaly

Motor 
impairment

Sensory 
impairment

Level of the 
spinal anomaly

n

r P-value r P-value r P-value

MEP area

Quadriceps 
femoris

0.31 0.09 0.26 0.16 -0.02 0.90 32

Tibialis anterior 0.31 0.10 0.39 0.04 -0.01 0.96 29

Gastrocnemius 0.66 0.00 0.60 0.01 -0.18 0.48 19

MEP latency

Quadriceps 
femoris

-0.10 0.60 -0.11 0.56 -0.10 0.60 32

Tibialis anterior -0.05 0.78 -0.13 0.50 0.24 0.21 29

Gastrocnemius -0.24 0.33 -0.12 0.62 0.20 0.42 19

CMAP area

Tibialis anterior 0.54 0.00 0.43 0.02 0.14 0.46 31

Gastrocnemius 0.79 0.00 0.56 0.01 0.13 0.61 19

CMAP latency

Tibialis anterior -0.34 0.06 -0.12 0.52 -0.22 0.24 31

Gastrocnemius -0.26 0.28 -0.37 0.12 0.02 0.95 19

P-values <0.05 are indicated in italics; n, number of patients

Table 5   Neonatal neurophysiological measurements and clinical impairment 
(median values) in relation to the outcome at two years of age

Muscle function 
class

P-valuec Community 
ambulator

P-valuec

Milda Severeb Yes No

(n=7) (n=22) (n=9) (n=20)

MEP area

Quadriceps femoris 2.7 2.1 0.83 3.6 1.6 0.23

Tibialis anterior 4.9 1.1 0.05 1.4 1.0 0.45

Gastrocnemius 2.5 1.8 0.15 2.5 1.6 0.44

CMAP area

Tibialis anterior 8.7 4.3 0.03 8.1 4.3 0.15

Gastrocnemius 11.5 3.8 0.03 8.1 2.2 0.10

Clinical impairment

Motor impairment 18.0 14.5 0.00 18.0 13.5 0.00

Sensory 
impairment

19.0 15.0 0.00 17.0 14.0 0.01

Level of the spinal 
anomaly

15.0 14.0 0.12 15.0 13.5 0.03

P-values <0.05 are indicated in italics
a Mildly impaired according to muscle function class 1 and 2
b Severely impaired according to muscle function class 3-5
c P-value based on Mann-Whitney U test

n, number of patients; these numbers pertain to the group in total and may be slightly different for 

the specific parameters assessed.
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A possible disadvantage of spinal magnetic stimulation is temporal dispersion 

[23,24]. However, as the MEP area is less liable to temporal dispersion than the 

amplitude, the area under the first negative curve was used as measure for the 

magnitude of the MEP. Other possible disadvantages of spinal magnetic 

stimulation are the inability to obtain maximal responses and the fact that the 

magnitude of the MEP depends on the stimulus site and the thickness of the 

intervening tissue between the coil and the motor neurons [29]. Maegaki et al. 

[30] suggested that the structure of vertebral bone surrounding the nerve roots 

interferes with the spread of magnetically induced currents. In children with 

spina bifida, all the structures surrounding the spinal cord and the nerve roots 

may be involved in the spinal anomaly, which may be of influence on the 

magnetically induced currents. Percutaneous electrical nerve stimulation was 

performed only for the tibialis anterior and gastrocnemius muscles. It would 

have been interestingly to perform electrical stimulation of the femoral nerve as 

well. However, this may be technically difficult as all infants had to be assessed 

in prone position in an incubator, because of the spinal anomaly. As such, 

femoral nerve stimulating would have resulted in unreliable responses. Besides, 

electrical stimulation of the femoral nerve may be too painful in infants. Despite 

these limitations, clear associations were found between the magnitudes of the 

MEPs and CMAPs and neonatal neurological impairment. 

 The results on sensory and motor impairment reflect the neurosegmental 

innervation of the muscles studied: the more cranial the neurosegmental 

innervation of the muscle, the weaker the association between the MEP area and 

sensory or motor impairment. These results are compatible with the results on 

the CMAPs after percutaneous electrical nerve stimulation. The results on 

neonatal motor impairment presented strong associations with CMAP areas of 

the gastrocnemius and tibialis anterior muscles and with the MEP areas of the 

gastrocnemius muscle, but no statistically significant associations with the MEP 

areas of the tibialis anterior and quadriceps femoris muscles were found. 

 Furthermore, the MEPs and CMAPs of the gastrocnemius and tibialis anterior 

muscles seem to be of prognostic value for motor development towards ambulation 

at two years of age. We found statistically significant differences in tibialis 

anterior and gastrocnemius CMAP areas and tibialis anterior MEP areas between 

the MFC subgroups. These MFCs are indicative of ambulation ability later in life. 

As the walking milestone might be delayed in children with spina bifida, some 

children will eventually become community ambulators at the age of six years 

[31]. This might explain why we did not find clear differences in the MEP and 

CMAP areas between the community ambulators and non-community 

ambulators, as ambulation status was assessed at the relatively early age of two 

years. The quadriceps femoris MEP areas did not differ between the two MFC 

mildly impaired subgroups compared to the severely impaired subgroups for 

both MFC and ambulation. For the tibialis anterior and gastrocnemius MEP 

areas, the differences between mildly and severely impaired MFC subgroups 

approached statistical significance. The CMAP areas were statistically significantly 

larger in the mildly impaired children compared to the severely impaired 

children according to MFC (p=0.03). All MEP and CMAP areas were larger in the 

community ambulators compared to the non-community ambulators, but these 

differences did not reach statistical significance. The CMAP and MEP latencies 

did not differ between mildly and severely impaired children (data not shown).

Discussion

This study is the first to evaluate the prognostic value of MEP and CMAP 

recordings for infants with spina bifida, assuming that MEP and CMAP recordings 

may provide additional information about neonatal neurological impairment in 

the lower limb muscles. As such, this study showed associations between MEPs 

and neonatal neurological impairment in newborn infants with spina bifida. 

The magnitudes of the MEP in the lower limb muscles, represented by the area 

under the curve of the first negative wave, related to the levels of motor and 

sensory impairment. CMAP areas were also associated with these levels of 

impairment. The results on spinal magnetic stimulation have not been reported 

before. Findings on associations between the CMAP areas and neurological 

impairment in newborn infants with spina bifida have previously been described 

for a smaller group of patients [21]. Other authors also reported responses to be 

present in lower limb muscles in almost all infants with spina bifida, although 

they used other methods of stimulation, such as electrical neural plaque 

stimulation and faradic muscle stimulation [28], in addition to percutaneous 

electrical nerve stimulation [13]. In these studies, only the presence or absence of 

a response was evaluated in relation to clinical impairment. This cannot be a 

diagnostic criterion, however, when responses are present in virtually every 

infant. In contrast, the associations found between the MEP and CMAP areas and 

neurological impairment in our study showed that these areas provide 

information about the degree of neurological impairment.

 The latencies did not relate to neurological impairment, probably because 

the ranges of the latency values were relatively small (Tables 2 and 3). The MEP 

latencies in the quadriceps femoris muscle were shorter than the MEP latencies 

in the other muscles, which is in accordance with the difference in distances 

from the point of excitation to the site of recording between the muscles. 

Chapter 5 Motor evoked potentials and compound muscle action potentials as prognostic tools for neonates...
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groups, which may be explained by the fact that children in MFC 1 and 2 (group 

1) as well as children in MFC 3 (part of group 2) represent good knee extension. 

 The neonatal clinical parameters, motor and sensory impairment, showed 

strong segregations regarding MFC and ambulation status as well. To what extent 

MEPs and CMAPs are as accurate as neonatal clinical neurological examinations 

and whether they have additional prognostic value for ambulation reached at a 

later age than two years requires further study. Important in this respect are the 

quality of the neurological examination on the one hand and the skill level of 

the assessor performing the neurophysiological assessment on the other hand.

Conclusion

Clinical determination of neurological impairment in newborn infants with 

spina bifida is complex. The demarcation of impairment to spinal segments is a 

simplification of the actual impairment, because residual motor function is 

present in affected spinal segments caudally from this demarcation. MEPs and 

CMAPs might be useful tools to assess this residual function. Although these 

neurophysiological methods need some refinement, the present study showed 

that MEPs after spinal magnetic stimulation and CMAPs after percutaneous 

electrical nerve stimulation are promising additional instruments in the clinical 

evaluation of infants with spina bifida. They have some prognostic value 

regarding the early neurodevelopmental outcome and they may be valuable in 

complex cases and in research settings, where objective information is needed 

about the degree of neurological impairment.
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Abstract

We aimed to disentangle the proportional contributions of upper motor neuron 

(UMN) and lower motor neuron (LMN) dysfunction to motor impairment in 

children with spina bifida. We enrolled 42 children (mean [SD] age, 11.2 [2.8] 

years) with spina bifida and 36 control children (mean [SD] age, 11.4 [2.6] years). 

Motor impairment was graded to known severity scales in children with spina 

bifida. Motor evoked potentials (MEPs) after transcranial and lumbosacral 

magnetic stimulation and compound muscle action potentials (CMAPs) after 

electrical nerve stimulation were recorded in all children. Regarding LMN 

function, severely impaired children with spina bifida demonstrated smaller 

CMAP areas and lumbosacral MEP areas than control children, whereas mildly 

impaired children hardly differed from control children. CMAP latencies and 

lumbosacral MEP latencies did not differ between children with spina bifida  

and control children. Regarding UMN function, children with spina bifida 

demonstrated smaller transcranial MEP areas and longer central motor conduction 

times (CMCTs) than control children. Smallest MEP areas and longest CMCTs were 

observed in severely impaired children. These findings suggest that in children 

with spina bifida, the contribution of UMN dysfunction to motor impairment is 

more considerable than expected from clinical neurological examination. 

Introduction

Spina bifida is a complex congenital malformation of the nervous system in 

which lower limb motor impairment may result from lower motor neuron (LMN) 

and upper motor neuron (UMN) dysfunction. LMN dysfunction directly results from 

segmental disorders in the spinal anomaly. UMN dysfunction, however, may 

result from disorders of the corticospinal tract either in or above the spinal 

anomaly. Disorders above the spinal anomaly are Chiari II malformation and white 

[1,2] and gray matter [3,4] abnormalities, whether or not related to hydrocephalus. 

Given the complex neuropathology, knowledge about the proportional contribution 

of LMN and UMN dysfunction to lower limb motor impairment is limited. However, 

when choices about treatment opportunities, such as prenatal surgery, are necessary, 

it is essential to distinguish corticospinal from spinal motor dysfunction in spina 

bifida. 

 In prenatal surgery, secondary damage to neural tissue may be prevented by 

covering the spinal anomaly at an early gestational age [5,6]. A randomized trail 

demonstrated improvement of motor outcome and reductions of hindbrain 

herniation and hydrocephalus shunting after prenatal surgery compared to 

postnatal surgery [7]. These important improvements at more than one level along 

the neural axis may be associated with corticospinal and spinal motor function 

improvement. 

 Distinguishing UMN from LMN dysfunction in neurological examinations is 

difficult, because predominant flaccid paresis may mask UMN involvement. 

Traditionally, the level of motor impairment is classified according to the 

segmental innervation scheme of Sharrad [8,9], but for prognostic purposes, the 

use of specific patterns of muscle strength seems more robust [10,11]. Although 

UMN signs are important in predicting outcomes [12], classifications do not 

differentiate between UMN and LMN dysfunction.

 Motor evoked potentials (MEPs) after magnetic stimulation are particularly 

useful to investigate UMN and LMN dysfunction, and are of diagnostic value in 

several neurological disorders in adults and children [13,14]. They constitute a safe 

and noninvasive method that is easily used and well tolerated [15,16]. Transcranial 

magnetic stimulation provides information about cortical motor function and the 

integrity of the corticospinal tract, whereas lumbosacral magnetic stimulation and 

nerve conduction studies, among others, by means of compound muscle action 

potential (CMAP) recording, provide information about spinal motor function [17].

 The present study sought to disentangle the proportional contributions of 

UMN and LMN dysfunction to lower limb motor impairment in children with 

spina bifida. We hypothesized that clinically hidden UMN dysfunction could be 

revealed using transcranial magnetic stimulation.
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wheelchair use outdoors only; 4, household ambulation with wheelchair use 

indoors and outdoors; and 5, nonfunctional ambulation.

 In addition, the spinal anomaly and the presence of Chiari II malformation, 

hydrocephalus, or corpus callosum dysgenesis were assessed by magnetic resonance 

imaging (1.5 T magnetic resonance imaging unit, Siemens Avanto, Siemens 

Medical Solutions, Erlangen, Germany).

Neurophysiological assessment
The children with spina bifida and the control children without spina bifida 

underwent the same neurophysiological investigations. All children were sitting 

on a chair or lying on a couch while MEPs and CMAPs were recorded using 

surface electrodes (standard tendon-belly montage) and an Oxford Synergy Elec-

tromyograph (Oxford Instruments, Old Woking, Surrey, UK; band-pass filter 20 

Hz and 3 kHz, amplifier range 100 mV, and display sensitivity 0.5 mV/division). 

We obtained MEPs bilaterally from the quadriceps femoris, tibialis anterior, 

gastrocnemius, and biceps brachii muscles; and CMAPs from the tibialis anterior 

and gastrocnemius muscles.

 For magnetic stimulation, a monophasic stimulator (Magstim 200, The Magstim 

Co. Ltd., UK) was used. Transcranial magnetic stimulation was performed at 100 

% stimulation, intensity with a double 110mm cone coil positioned centrally 

over the vertex to record MEPs from the lower limb muscles, and with a 90mm 

circular coil positioned centrally over the vertex to record MEPs from the biceps 

brachii muscle. Unfacilitated MEPs were recorded during relaxation of the target 

muscle and facilitated MEPs during active isometric contraction of the target 

muscle against manual resistance. If children with spina bifida were unable to 

perform a contraction, we asked them to pretend they were performing a 

contraction. This strategy will also result in facilitated MEPs [17]. 

 Spinal magnetic stimulation was performed with a 90mm circular coil 

positioned centrally over the spine. In all children, cervical magnetic stimulation 

was performed over C7 to record MEPs from the biceps brachii muscle. In control 

children, lumbosacral stimulation was performed at L5 for the quadriceps 

femoris muscle and at S1 for the tibialis anterior and gastrocnemius muscles, 

where we expected the largest MEPs [21]. Because of the abnormal anatomy of the 

spine, lumbosacral stimulation was performed successively at four levels (L4, L5, 

S1, and S2) to search for the largest MEP in children with spina bifida. This MEP 

was then used in the analyses. Stimulation intensity was 100% in all children, 

except for a few control children in whom this intensity led to discomfort. In 

these children, we used stimulation intensities of 80% or 90%. No substantial 

response differences were expected at intensities ranging from 80% to 100% [22].

Methods

Participants
Children with spina bifida were recruited from the Outpatient Clinic of  

Pediatric Neurology at the Radboud University Nijmegen Medical Centre in the 

Netherlands. Inclusion criteria comprised: 1) Birth between January 1988 and 

December 1997; 2) Presence of an open spinal dysraphism, such as myelomen-

ingocele or myelocele, or a closed spinal dysraphism with a subcutaneous mass, 

such as lipomyelocele, lipomyelomeningocele, or meningocele [18], as assessed 

by neonatal physical examination and magnetic resonance imaging in the 

context of a larger research project and classified according to Rossi et al [18]. 

Exclusion criteria comprised: 1) Presence of a closed dysraphic state without  

a subcutaneous mass, such as intradural lipoma, tight filum terminale,  

dermal sinus, or diastematomyelia [18]; 2) Additional congenital malformations, 

except for cerebral malformations that are commonly associated with spinal 

dysraphism, such as hydrocephalus, Chiari II malformation, and corpus callosum 

dysgenesis. 

 Control children were recruited from the Outpatient Clinics of General 

Pediatrics, Pediatric Surgery, and Pediatric Orthopedics at the Radboud University 

Nijmegen Medical Centre. Inclusion criteria comprised: 1) Good health and physical 

condition; 2) Transient disease with complete recovery. Exclusion criteria comprised: 

1) Suspicion or presence of neurological abnormalities, developmental delay, or 

behavioral disorder, as ascertained from chart review, interview, and complete 

neurological examination; 2) Chronic disease. 

 The Regional Committee on Research involving Human Subjects approved 

the study design. Written informed consent was obtained from parents of all 

participating children, and from all children above 12 years of age. 

Clinical evaluation
We used three measures to assess lower limb motor function: muscle strength, 

muscle function class, and ambulation. Muscle strength was graded bilaterally 

on a 0-5 scale by manual muscle testing [19]. The muscle strengths of the quadriceps 

femoris, tibialis anterior, and gastrocnemius muscles were analyzed as separate 

variables. Muscle function classes were defined according to patterns of muscle 

strength [10,11]: 0, no weakness in any lower limb muscle; 1, weakness of intrinsic 

foot muscles; 2, weakness or absence of plantar flexion; 3, weakness or absence of 

knee flexion; 4, weakness or absence of knee extension; and 5, no muscle activity 

in the lower limbs. Ambulation was classified according to modified Hoffer 

criteria [11,20] into: 1, community ambulation; 2, community ambulation with 

wheelchair use only for long distances outdoors; 3, household ambulation with 
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Thirty-six control children (13 boys and 23 girls) were enrolled in the study. The 

mean age ± SD was 11.4 ± 2.6 years (range, 6.1 – 15.8 years).

Clinical evaluation
Lower limb motor function in the children with spina bifida was assessed by 

three clinical measures: muscle strength, muscle function class, and ambulation. 

Regarding muscle strength, nine children demonstrated weakness (grade 0-3 on 

manual muscle testing) of the quadriceps femoris muscles, 18 of the tibialis 

anterior muscles, and 20 of the gastrocnemius muscles. Muscle function class 0-2 

applied to 29 children, and muscle function class 3-5 applied to 13 children. 

Regarding ambulation, 25 children were community ambulant, and 17 were 

noncommunity ambulant. In our description of the results on upper and lower 

motor neuron function, the subgroups based on these three clinical measures 

will be referred to as mildly or severely impaired.

Recorded MEPs and CMAPs
In a few children with spina bifida, the measurements were incomplete because  

of premature termination of the investigation upon discomfort, or else transcranial 

or spinal magnetic stimulation did not result in MEPs. As such, the number of 

available MEPs per target muscle ranged from 23 to 34 after transcranial 

magnetic stimulation, and from 34 to 38 after spinal magnetic stimulation. 

CMAPs in the tibialis anterior and gastrocnemius muscles were available for 40 

and 36 children with spina bifida, respectively. In 12 control children, the 

measurements were incomplete because of premature termination. In the 

remaining control children, all responses were obtained. The number of available 

MEPs per target muscle ranged from 24 to 30 after transcranial magnetic 

stimulation and from 29 to 31 after spinal magnetic stimulation. CMAPs in the 

tibialis anterior and gastrocnemius muscles were available for 30 control children 

for each muscle.

Lower motor neuron function 
CMAPs and lumbosacral MEPs provide information about LMN function. CMAP 

areas (area under the curve of the first negative wave of a CMAP) were smaller in 

children with spina bifida than in control children. Among children with spina 

bifida, CMAP areas were smallest in severely impaired children, whereas mildly 

impaired children differed from control children only for gastrocnemius CMAP 

areas (Table 1, Figure 1). Results for the lumbosacral MEP area in the quadriceps 

femoris muscle were similar to the results for the CMAP area. Lumbosacral MEP 

areas were smaller in children with spina bifida than in control children, except 

for the tibialis anterior muscle. Among children with spina bifida, MEP areas 

In addition, percutaneous electrical stimulation of the peroneal nerve and the 

posterior tibial nerve was performed at the popliteal fossa to assess the maximal 

CMAP in the tibialis anterior and gastrocnemius muscles, respectively.

 For each MEP and CMAP the onset latency (ms) and the area under the curve 

of the first negative wave (mVms) were calculated. For each target muscle, the 

central motor conduction time (CMCT; ms) was calculated from the difference 

between the onset latency of the facilitated transcranial MEP and the onset 

latency of the spinal MEP.

 During investigation, children were observed for discomfort by an independent 

observer. In case of discomfort, we terminated the investigation prematurely.

Statistical analysis
The three clinical measures were analyzed as dichotomized variables resulting 

in a mildly and a severely impaired subgroup for each measure: muscle strength 

of 0-3 (weakness) versus muscle strength of 4-5 (no or little weakness); muscle 

function classes 0-2 (expected to be ambulant) versus muscle function classes 3-5 

(expected not to be ambulant); and ambulation groups 1-2 (community ambulant) 

versus ambulation groups 3-5 (non-community ambulant).

 Because the neurophysiological data were not normally distributed, we used 

nonparametric tests. The Mann-Whitney U test was used to study differences in 

neurophysiological parameters between children with spina bifida and control 

children, and between mildly and severely impaired children with spina bifida. 

Differences between unfacilitated and facilitated MEPs were analyzed using the 

Wilcoxon test for paired observations. P-values less than 0.05 were considered 

statistically significant. 

Results

Participants
Forty-two children (16 boys and 26 girls) with spina bifida were enrolled in the 

study. Twenty-six children manifested open spinal dysraphism and 16 manifested 

closed spinal dysraphism with a subcutaneous mass. The level of the spinal 

anomaly was thoracic in nine, lumbar in 31, and sacral in two children. Twenty- 

four children manifested hydrocephalus, 23 manifested Chiari II malformation, 

and 18 manifested corpus callosum dysgenesis. The mean age ± SD was 11.2 ± 2.8 

years (range, 6.5 – 16.8 years). All children had undergone neonatal spinal 

surgery, and all children with hydrocephalus were shunted within the first 

month of age. At the moment of investigation, none of the children presented 

signs of shunt malfunction.
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were smallest in severely impaired children, whereas mildly impaired children 

differed slightly from control children (Table 2, Figure 1).

 CMAP latencies and lumbosacral MEP latencies did not differ between 

children with spina bifida and control children. Among children with spina 

bifida, CMAP latencies were longest in severely impaired children, whereas 

lumbosacral MEP latencies did not differ between mildly and severely impaired 

children (Tables 1 and 2, Figure 1). 

Upper motor neuron function
Transcranial MEPs and CMCTs provide information about UMN function. 

Facilitated transcranial MEP areas were smaller in children with spina bifida 

than in control children for the lower limb muscles, as well as for the upper limb 

muscle. MEP areas were smallest in severely impaired children, while mildly 

Chapter 6 Contribution of the corticospinal tract to motor impairment in spina bifida
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Table 1   CMAP area and latency (median values) in control children and 
children with spina bifida 

Area (mVms) Latency (ms)

TA P-valuea GM P-value TA P-value GM P-value

Spina bifida versus control

Control 12.2 21.2 2.9 3.3

Spina bifida 7.5 <0.01 8.3 <0.01 2.7 0.30 3.1 0.12

Among children with spina bifida

Muscle strength target muscle 

No or little weakness (4-5) 10.9 9.8 2.5 2.8

Weakness (0-3) 4.3 <0.01 6.8 0.07 3.1 0.02 3.5 0.01

Muscle function class

Class 0-2 10.5 9.2 2.5 2.8

Class 3-5 3.3 <0.01 6.7 0.03 3.3 0.01 3.5 0.05

Ambulation

Community ambulation 10.5 9.2 2.6 2.8

Non-community 
ambulation

5.2 <0.01 6.7 0.07 3.1 0.04 3.5 0.08

a P-value based on Mann-Whitney U test.

CMAP, compound muscle action potential; TA, tibialis anterior muscle; GM, gastrocnemius muscle
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impaired children still demonstrated substantially smaller MEP areas than did 

control children (Table 3, Figure 2). We observed similar results for facilitated 

MEP latencies, i.e., longer latencies in children with spina bifida compared to 

control children, and in severely impaired children compared with mildly impaired 

children (data not shown). In contrast, unfacilitated transcranial MEP areas and 

latencies did not differ between children with spina bifida and control children, 
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Figure 1   Box plots showing CMAP area (A), CMAP latency (B), lumbosacral MEP 

area (C), and lumbosacral MEP latency (D) in lower limb muscles in 

control children and in children with spina bifida grouped according  

to muscle strength in the target muscles. Bold horizontal lines indicate 

median values; boxes represent interquartile ranges (IQR), vertical 

lines represent 1.5 IQR, and separate points are outliers. QF, quadriceps 

femoris muscle; TA, tibialis anterior muscle; GM, gastrocnemius muscle.
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or among children with spina bifida. Hence, facilitated MEP areas were larger 

than unfacilitated MEP areas in control children and in mildly impaired children 

with spina bifida, but not in severely impaired children. These results are 

illustrated according to muscle function class in Figure 2. 
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Figure 2   Box plots showing differences between facilitated and unfacilitated 
transcranial MEP areas in control children, mildly impaired children 
(MFC 0-2) and severely impaired children (MFC 3-5) with spina bifida 
for four muscles: biceps brachii muscle (A), quadriceps femoris muscle 
(B), tibialis anterior muscle (C), and gastrocnemius muscle (D). Bold 
horizontal lines indicate median values; boxes represent interquartile 
ranges (IQR), vertical lines represent 1.5 IQR, and separate points are 
outliers. MFC, muscle function class.
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seemed to be associated with the severity of clinical motor impairment. Moreover, 

the CMCTs resembled the different neurosegmental innervations of the 

investigated muscles. In the complex neuropathology of spina bifida, the origin 

of UMN dysfunction may occur in the corticospinal tract in or above the spinal 

anomaly. Because the results were similar for both upper and lower limb muscles, 

we considered UMN dysfunction to be located above the spinal anomaly, or to be 

more specific, above the neurosegmental innervation of the biceps brachii 

muscle. This may result from damage to the corticospinal tract at the cervicome-

dullary junction due to hindbrain herniation or from white matter abnormalities, 

whether or not related to hydrocephalus. This latter explanation may be 

supported by diffusion tensor imaging studies revealing complex white matter 

abnormalities in spina bifida [1].

 As observed in the control children, voluntary muscle contraction during 

transcranial magnetic stimulation results in shorter MEP latencies and larger 

MEP areas [23]. This facilitation was substantially decreased in children with 

spina bifida (Figure 2). Although the physiology of facilitation is not entirely 

understood, changes in both spinal and cortical excitability seem to be involved 

[24]. Based on our results, it difficult to deduce whether abnormalities in spinal 

or cortical excitability are responsible for the decreased facilitation. Remarkably, 

even in muscles with no or little weakness (i.e., children were able to perform a 

contraction of at least MRC grade 4) and with substantial CMAPs, facilitated 

MEPs were smaller than in control muscles. Therefore, the simple explanation 

that the inability to perform a muscle contraction results in smaller facilitated 

MEPs is not applicable. We suggest that abnormal cortical excitability is 

responsible for the decreased facilitation in spina bifida. 

 LMN dysfunction can be identified from CMAPs and lumbosacral MEPs. 

CMAP areas and lumbosacral MEP areas were reduced mainly in severely 

impaired children with spina bifida, whereas latencies were unaffected in both 

mildly and severely impaired children. Therefore, the number of motor units 

may be reduced, because of axonal loss, particularly in severely impaired 

children, whereas the conduction ability of the preserved motor units seems to 

be relatively intact. Moreover, CMAPs and lumbosacral MEPs were still obtainable 

in clinically paralytic muscles. These results are compatible with previously 

reported LMN function in newborn infants with spina bifida [25,26].

 Differentiation between UMN and LMN dysfunction is scarcely addressed in 

reports on neurological outcome of spina bifida. In observational studies of 

newborn infants, the disappearance of lower limb movements has been related 

to LMN dysfunction, whereas neural conduction through the spinal anomaly 

was related to preserved UMN function [27]. Although we investigated older 

children, our results are slightly in contrast with those previous results, because 

CMCTs were longer in children with spina bifida than in control children for the 

lower limb muscles, as well as for the upper limb muscle. CMCTs were longer in 

severely impaired children compared to mildly impaired children, although not 

statistically significant for all muscles, whereas mildly impaired children still 

had longer CMCTs than did control children (Table 4, Figure 3).

Discussion

Spina bifida is a congenital malformation of the nervous system with complex 

neuropathology involving corticospinal and spinal motor pathways. In an 

attempt to disentangle UMN involvement from LMN involvement in lower limb 

motor impairment, this study demonstrated UMN dysfunction in both mildly 

and severely impaired children with spina bifida, whereas LMN dysfunction was 

mainly observed in severely impaired children.

 UMN dysfunction was identified by reduced transcranial MEP areas and 

prolonged CMCTs. The transcranial MEP area may also reflect LMN dysfunction, 

but the CMCT above all reflects UMN dysfunction. The degree of UMN dysfunction 
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Figure 3   Box plots showing differences in CMCT between control children, 

mildly impaired children (MFC 0-2) and severely impaired children 
(MFC 3-5) with spina bifida. Bold horizontal lines indicate median 
values; boxes represent interquartile ranges (IQR), vertical lines 
represent 1.5 IQR, and separate points are outliers. MFC, muscle 
function class; BB, biceps brachii muscle; QF, quadriceps femoris 
muscle; TA, tibialis anterior muscle; GM, gastrocnemius muscle.
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equal for children with spina bifida and control children. Therefore, the 

differences in CMCT primarily reflect a difference in corticospinal motor 

conduction between children with spina bifida and control children. 4) In some 

children, the study protocol was incompletely applied. However, a sufficient 

number of responses were available for the analyses. In children with spina 

bifida, a few muscles were unresponsive. We did not use these results in the 

analyses, as this would have rendered the differences with the control children 

unjustifiably large. 5) We did not relate the results to body height or age. This 

factor may hold some relevance for the MEP latency, but not for the MEP area and 

the CMCT. The CMCT in particular is unrelated to age and body height after the 

age of five years [30,31].

 In conclusion, the contribution of UMN dysfunction to lower limb motor 

impairment is more considerable than expected from neurological examination 

in children with spina bifida. This UMN dysfunction seems to originate in the 

corticospinal tract above the spinal anomaly. These findings provide additional 

understanding of the complex corticospinal and spinal pathology of spina bifida. 

As such, transcranial magnetic stimulation may be of value in clinical settings 

and in research settings to objectively asess motor impairment in spina bifida.
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UMN dysfunction was more obviously involved in motor impairment, whereas 

LMN function seems to be relatively preserved throughout the childhood years. 

We hypothesize that LMN dysfunction is secondary to UMN dysfunction, because 

the UMN is involved in the activity-dependent regulation of the development of 

the LMN [28].

 These findings may involve consequences for clinical practice. Although 

flaccid paresis is generally the most prominent clinical sign, LMN dysfunction 

may play a minor role in motor impairment. UMN dysfunction, on the other 

hand, although it is masked by flaccid paresis, seems to contribute considerably 

to motor impairment. Our results also indicate that UMN dysfunction is related 

to functional outcome, because the ability to walk was associated with the 

degree of UMN dysfunction. Moreover, UMN dysfunction should be considered in 

case of unexplained deterioration of function. For example, secondary tethering 

of the spinal cord is commonly observed in growing children with spina bifida, 

and is generally associated with additional UMN dysfunction. Transcranial 

magnetic stimulation may be helpful in the early recognition of this complication.

 Furthermore, transcranial and spinal magnetic stimulation may provide 

objective information about corticospinal and spinal motor function in research 

settings, with particular relevance for the outcomes of prenatal surgery for spina 

bifida. Prenatal surgery offers promise for improvements in motor function and 

reductions of hindbrain herniation and hydrocephalus shunting [7]. Using 

transcranial and spinal magnetic stimulation, the improvement of UMN and 

LMN function in relation to the reported clinical and morphological improvements 

may be disclosed. 

 The study contains some limitations. 1) Because of our cross-sectional design, 

the study group was heterogeneous. We did not differentiate the neurophysiolog-

ical results between open and closed spinal dysraphism or between presence and 

absence of cerebral comorbidity, because we were primarily interested in lower 

limb motor impairment in relation to LMN and UMN dysfunction. 2) The level of 

lumbosacral magnetic stimulation differed between children with spina bifida 

and control children. Performing lumbosacral stimulation at one level does not 

make sense in children with spina bifida, because of the abnormal anatomy of 

the spine and spinal cord. Nevertheless, abnormal anatomy may have had some 

influence on the results of lumbosacral magnetic stimulation. 3) We estimated 

the CMCT from the difference between the latencies of the transcranial MEP and 

the lumbosacral MEP. Using this method, the calculated CMCT includes a small 

part of the proximal LMN, because lumbosacral magnetic stimulation results in 

activation of motor nerve roots at the site where they leave the intervertebral 

foramen [21,29]. However, considering the unaffected lumbosacral MEP latency 

in children with spina bifida, the part of the proximal LMN included will be 

Chapter 6 Contribution of the corticospinal tract to motor impairment in spina bifida
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Abstract

Purpose Brain MR imaging is essential in the assessment of Chiari II malformation 

in clinical and research settings concerning spina bifida. However, the inter-

pretation of morphological features of the malformation on MR images may not 

always be straightforward. In an attempt to select those features that unambiguously 

characterize the Chiari II malformation, we investigated the interobserver 

reliability of all its well-known MR features.

Methods Brain MR images of 79 children (26 presumed to have Chiari II 

malformation, 36 presumed to have no cerebral abnormalities, and 17 children 

in whom some Chiari II malformation features might be present; mean age 10.6 

[SD 3.2; range 6 to 16] years) were blindly and independently reviewed by three 

observers. They rated 33 morphological features of the Chiari II malformation as 

present, absent, or indefinable in three planes (sagittal, axial, and coronal). The 

interobserver reliability was assessed using κ statistics. 

Results Twenty-three of the features studied turned out to be unreliable, whereas 

the interobserver agreement was almost perfect (κ value > 0.8) for nine features 

(eight in the sagittal plane and one in the axial plane, but none in the coronal 

plane). 

Conclusions This study presents essential features of the Chiari II malformation 

on MR images by ruling out the unreliable features. Using these features may 

improve the assessment of Chiari II malformation in clinical and research 

settings.

Introduction

Chiari II malformation is a complex developmental malformation of the central 

nervous system. It is characterized by a small posterior fossa and downward 

displacement of the cerebellum and brainstem through an enlarged foramen 

magnum (hindbrain herniation) [1]. Chiari II malformation is almost uniquely 

associated with open spinal dysraphism [2]. McLone and Knepper [3] hypothesized 

that leakage of cerebrospinal fluid through the spinal anomaly reduces the 

distension of the embryonic ventricular system. The decreased inductive pressure 

on the surrounding mesenchyme results in an abnormally small posterior fossa. 

Approximately one third of the patients with Chiari II malformation develop 

signs and symptoms of brainstem compression [4]. The mortality in this symptomatic 

group is 15 to 35% [5,6]. 

 Usually, Chiari II malformation is clinically diagnosed with the help of MR 

imaging. On MR images, the malformation is characterized by a constellation of 

morphological features (Table 1). Most of these features were originally derived 

from post-mortem examinations [7-10] or computed tomography studies [11-14]. 

With the introduction of MR imaging, most features were simply adopted to 

evaluate MR images [15-19]. However, the interpretation of features as seen on 

MR images may not always be straightforward. First, the malformation is 

heterogeneous in itself and in its relation with spinal dysraphism. Second, an 

abundance of features exist, which may obscure unambiguous assessment of 

Chiari II malformation. Third, the definitions of some features are equivocal and 

reviewers may interpret features differently. Although most features are typical 

for Chiari II malformation, knowledge about the reliability of rating these 

features on MR images is lacking. 

 Still, brain MR imaging plays a substantial role in clinical decision making 

regarding the management of children with spina bifida [18,20]. On the one hand, 

the discussion on selective treatment of severely affected newborn infants is still 

ongoing [21]. On the other hand, fetal imaging and prenatal surgery are becoming 

more important every day. Recently, a randomized trial showed important 

improvement of hindbrain herniation following prenatal surgery for spina bifida 

[22]. However, the assessment of Chiari II malformation may be even more 

complicated in prenatal MR imaging. A discrepancy of 41% was seen in judgment of 

the degree of cerebellar herniation in prenatal MR imaging studies [23]. When 

choices have to be made about prenatal and postnatal treatment options, it is 

important to have consensus about the morphological features that unambiguously 

characterize Chiari II malformation. As a proper reference standard is not available, 

however, testing the validity of different features is unattainable. The next best 

method to appraise these features is to evaluate interobserver reliability.

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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The Regional Committee on Research involving Human Subjects approved the 

study protocol. Prior to inclusion in the study, written informed consent was 

obtained from the parents of all 36 children and all children above 12 years of 

age taking part in the prospective research program.

Image analysis
All MR images were blinded for demographic and diagnostic information. The 

MR images were mixed and arranged by plane into three data sets: a sagittal set, 

an axial set, and a coronal set. These three data sets were reviewed consecutively 

and independently by three observers: a junior pediatric neurologist (N.G.) with 

6 years of experience in reviewing pediatric brain MR images, a senior pediatric 

neurologist (R.A.M.), and a senior neuroradiologist (T.V.), both with more than 20 

years of experience in reviewing pediatric brain MR images. A few weeks 

separated the reviews of the three datasets to prevent bias by recognition of 

images from a former set as much as possible. The images were available on 

compact disks and were reviewed on an Agfa workstation or on a personal 

computer using Agfa software (Impax Client, release 4.5).

 The morphological features of Chiari II malformation to be assessed were 

selected from the literature and incorporated in a review protocol (Table 1). First, 

the feasibility of the protocol was evaluated in a pilot study (n = 10), resulting in 

a final set of study features with their definitions. The observers rated all features 

as being present, absent, or indefinable. 

Statistical analysis
For each feature, the ‘present’, ‘absent’, and ‘indefinable’ ratings were tallied up 

per observer. First, the ‘indefinable’ ratings were evaluated to assess the applicability 

of each feature. If two or three observers rated a feature as indefinable in more 

than 5% of the MR images, it was qualified as non-applicable and subsequently 

excluded from the further analyses. 

 Interobserver agreement analyses were performed for the applicable features 

using only the ‘present’ and ‘absent’ ratings. The percentages of agreement were 

obtained from contingency tables. Based on these tables, κ values for multiple 

observers were calculated to measure the extent of agreement among the three 

observers [27]. To comprehend possible sources of disagreement, κ values were 

also calculated for pairs of observers. We considered a feature reliable when the 

κ value was above 0.8, which denotes almost perfect agreement [28]. The analyses 

were performed using SAS software version 8.2 (SAS Institute).

Therefore, we initiated a study to investigate the interobserver reliability of 

morphological features of the Chiari II malformation on MR images. The purpose 

of this study was to select those features among the abundance of features that 

are essential for the diagnosis of the malformation, hypothesizing that several 

features would be too unreliable to adequately characterize Chiari II malformation.

Material and methods

Patients
Brain MR images of 79 children (mean age 10.6 [SD 3.2; range 6 to16] years) were 

evaluated. Of these children, 26 had open spinal dysraphism, while 17 children 

had closed spinal dysraphism (13 with lipomyelomeningocele and four children 

with other types of closed spinal dysraphism). The children with open spinal 

dysraphism were presumed to have Chiari II malformation [2], while children 

with closed spinal dysraphism might have some features of hindbrain herniation 

according to the literature [24,25]. The latter group was included to reduce 

context bias [26]. The majority of these children with spinal dysraphism (n =36) 

were recruited at the Outpatient Clinics of Pediatric Neurology of the Radboud 

University Nijmegen Medical Centre (RUNMC) as part of a prospective research 

program dedicated to outcome and prognosis of spina bifida. MR images of the 

remaining seven children were obtained retrospectively from the archives of the 

Department of Radiology of the RUNMC, from which we also obtained MR images 

of 36 children without spinal dysraphism, who were presumed to have no 

cerebral pathology. Although MR imaging in these 36 children was performed 

with suspicion of or to rule out cerebral pathology, the images had been assessed 

as normal by an independent radiologist in a clinical setting before the start of 

the study. 

MR imaging
All MR images were acquired using a 1.5 T MR imaging unit (Siemens Avanto; 

Siemens Medical Solutions, Erlangen, Germany) with a standard head coil. MR 

imaging in the 36 children who were part of the prospective research program 

consisted of T1-weigthed images in the sagittal plane and T2-weigthed images in 

the axial and coronal plane. The retrospectively obtained MR images were 

acquired using comparable sequences. For different reasons, MR images were not 

acquired in three planes for all 79 children. Images in the sagittal plane were 

available for 69 children (41 with spinal dysraphism), images in the axial plane 

for 58 children (32 with spinal dysraphism), and images in the coronal plane for 

51 children (37 with spinal dysraphism). 

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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The interobserver agreement of the applicable features is presented in Table 4. The 

right panel of the table shows the percentages of agreement and disagreement, 

while the left panel shows the κ values. The interobserver agreement among all 

three observers was almost perfect (κ value > 0.8) for the following features in 

Results

For each feature, the percentages of ‘present’ and ‘indefinable’ ratings are 

summarized per observer in Table 2. All observers rated most features in the 

sagittal plane as present in 20-35% of the MR images, whereas the percentages of 

‘present’ ratings in the axial and coronal planes varied substantially among 

features and among observers. In general, observer C rated features as ‘present’ 

less often than the other two observers did, whereas observer B rated features as 

‘indefinable’ more often than the other two observers did. In the sagittal plane, 

all but one feature (Stenogyria) turned out to be applicable. In contrast, in the 

axial and coronal plane more than half of the features turned out to be non- 

applicable (Table 2). One observer rated Enlarged massa intermedia in the axial 

plane as indefinable in all but one MR image. The ratings of features in children  

with open or closed spinal dysraphism or without spinal dysraphism are presented 

in Table 3. With a few exceptions, features were quite common in children with 

open spinal dysraphism and hardly seen in the other children.

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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Table 2  Proportions of ‘present’ and ‘indefinable’ ratings per observer for 
each feature of Chiari II malformation

Feature Present Indefinable Non-
applicablea

A B C A B C

Sagittal plane

Downward herniation cerebellum 35 33 35 - - -

Downward herniation vermis 25 28 35 3 3 -

Downward herniation tonsil 33 30 26 1 1 6

Upward herniation cerebellum 13 17 6 - 6 3

Downward displacement medulla 30 26 20 - - 3

Downward displacement pons 26 26 13 - 3 3

Downward displacement fourth ventricle 25 23 20 - 4 1

Medullary kinking 17 14 14 1 1 6

Flattened pons 25 38 23 - - -

Abnormal width fourth ventricle 25b 25 29b - - 1

Hypoplastic tentorium 26 22 22 - 13 3

Abnormal course straight sinus 23 23 29 9 4 3

Beaked tectum 25 28 23 - - -

Table 2  Continued

Feature Present Indefinable Non-
applicablea

A B C A B C

Enlarged massa intermedia 43 62 10 - - 4

Stenogyria 19 7 9 3 22 12 +

Axial plane

Cerebellum in cervical spinal canal 21 21 19 10 19 12 +

Vermis in cervical spinal canal 2 2 14 26 36 16 +

Tonsil in cervical spinal canal 7 5 16 24 34 16 +

Cerebellum wrapped around brainstem 29 24 3 - 5 2

Abnormal fissural pattern of cerebellum 29 59 47 7 7 5 +

Small fourth ventricle 26 28 26 - 3 -

Enlarged fourth ventricle 3 2 3 - 9 -

Beaked tectum 19 26 19 7 7 7 +

Enlarged massa intermedia 17 12 - - 3 98 +

Gyral interdigitation 22 31 17 5 7 5 +

Stenogyria 17 9 7 7 91 12 +

Coronal plane

Downward herniation cerebellum 35 26 24 8 8 4 +

Downward herniation vermis 10 69 14 18 31 6 +

Downward herniation tonsil 35 24 24 8 10 2 +

Upward herniation cerebellum 26 12 8 2 6 6 +

Indentation 12 12 6 2 4 -

Hypoplastic tentorium 26 2 14 4 61 2

Gyral interdigitation 18 26 14 2 10 4

Data are percentages 
a At least two observers considered the feature as indefinable in more than 5% of the MR images
b All abnormally small fourth ventricles, except for one dilated fourth ventricle 

A, observer A; B, observer B; C, observer C
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the sagittal plane: Downward herniation cerebellum, Downward herniation tonsil, 

Downward displacement medulla, Downward displacement fourth ventricle, Medullary 

kinking, Abnormal width fourth ventricle, Hypoplastic tentorium, and Beaked tectum 

(Figure 1). Only one feature in the axial plane (Small fourth ventricle) showed almost 

perfect agreement, while none of the features in the coronal plane did. The 

overall κ values for the remaining features ranged from 0.50 (Cerebellum wrapped 

around brainstem) to 0.75 (Downward displacement pons), except for a very low κ value 

for Enlarged massa intermedia (0.10). Table 4 also lists the κ values for pairs of 

observers. For seven features, the κ values differed substantially among pairs of 

observers: Downward herniation vermis, Upward herniation cerebellum, Downward 

displacement pons, and Abnormal course straight sinus in the sagittal plane; Cerebellum 

wrapped around brainstem in the axial plane; and Indentation and Gyral interdigita-

tion in the coronal plane. In general, the agreement between observers A and B 

was stronger than the agreement of each of them with observer C. 

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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Table 3   Features of Chiari II malformation present on MR images in children 
with open or closed spinal dysraphism or without spinal dysraphism

Feature Spinal dysraphism No spinal 
dysraphism

Open Closed

Sagittal plane (n=207) (%a) (%a) (%a)

Downward herniation cerebellum 83 16 4

Downward herniation vermis 74 10 2

Downward herniation tonsil 75 14 1

Upward herniation cerebellum 33 2 -

Downward displacement medulla 68 8 -

Downward displacement pons 61 2 -

Downward displacement fourth ventricle 64 2 -

Medullary kinking 40 6 -

Flattened pons 75 2 -

Abnormal width fourth ventricle 74 2 -

Hypoplastic tentorium 67 - -

Abnormal course straight sinus 71 - 7

Beaked tectum 72 - -

Enlarged massa intermedia 36 35 43

Stenogyria 32 2 -

Axial plane (n=174)

Cerebellum in cervical spinal canal 47 7 3

Vermis in cervical spinal canal 15 - -

Tonsil in cervical spinal canal 24 - -

Cerebellum wrapped around brainstem 50 - -

Abnormal fissural pattern of cerebellum 68 43 26

Small fourth ventricle 68 3 -

Enlarged fourth ventricle   8 - -

Beaked tectum 56 - -

Enlarged massa intermedia 23 - 3

Gyral interdigitation 56 7 3

Stenogyria 21 - -

Table 3   Continued

Feature Spinal dysraphism No spinal 
dysraphism

Open Closed

Coronal plane (n=153)

Downward herniation cerebellum 67 6 -

Downward herniation vermis 65 6 -

Downward herniation tonsil 20 - -

Upward herniation cerebellum 38 - -

Indentation 25 - -

Hypoplastic tentorium 35 - -

Gyral interdigitation 38 12 -

a The numbers represent percentages of present ratings based on the overall ratings of three 

observers
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Discussion 

On brain MR images, Chiari II malformation is generally assessed based on a 

constellation of morphological features. The current study reports on the reliability 

of these features leading to the identification of essential features that may 

improve consensus on the diagnosis of Chiari II malformation. 

 In this study, reliable features were distinguished from unreliable features, 

with reliable features predominantly being found in the sagittal plane. This in 

itself is not surprising, as most of the morphological abnormalities are best 

shown in the midsagittal plane, which is usually used to assess Chiari II 

malformation. Still, a substantial number of features in the sagittal plane (six 

out of 14) showed less than perfect or poor reliability and most features in the 

axial and coronal plane were non-applicable. These results support our assumption 

that the MR interpretation of Chiari II malformation is not always straightfor-

ward. The unreliability of features may be explained by their qualitative nature 

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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Figure 1   A. Sagittal T1-weighted brain MR image in 16-year-old child with open 

spinal dysraphism. The image shows herniation of the vermis (large 

white arrow), herniation of the tonsil (large white open arrow), and 

medullary kinking (small white arrow). B. Sagittal T1-weighted brain 

MR image in 12-year-old child with open spinal dysraphism. The 

image shows herniation of the cerebellum (large white arrow). The 

vermis and tonsil cannot be demarcated from each other. Note the 

beaked tectum (small white arrow) and the hypoplastic tentorium. Also, 

note the downward displacement of the medulla and pons and the 

small fourth ventricle in both images.

A B
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The systematic disagreement for Downward herniation vermis is of special interest. 

Blurred cerebellar contours in a crowded posterior fossa and partial volume 

effects may hamper precise demarcation of the vermis and may make it difficult 

to distinguish the vermis from the tonsil and from medullary kinking (Figure 1). 

This is in agreement with previous studies that reported that the vermis could 

not be clearly delineated in about 50% of children with Chiari II malformation 

[15,16]. On the other hand, systematic disagreement may have resulted from 

different concepts about the morphology of Chiari II malformation. Observer C, 

in contrast to the other two observers, considered Downward herniation vermis to 

be present more often than Downward herniation tonsil (Table 2). Yet, from post- 

mortem studies, it is known that herniation of the vermis without herniation of 

the tonsils does not occur [9]. Therefore, we recommend to assess downward 

herniation of the cerebellum irrespective of this being herniation of the vermis 

or herniation of the tonsils. 

and the fact that the distinction between normal and abnormal brain 

development is not defined by an unambiguous cutoff point. Judgment of the 

features is further complicated by the morphological diversity of the 

malformation and the fact that MR images capture features to various degrees. 

These general explanations mainly apply to features with random disagreement, 

that is to say, when the overall κ value and all pairwise κ values are low (e.g., 

Upward herniation cerebellum, Flattened pons, and Gyral interdigitation; Table 4).

 On the other hand, the results for pairwise agreement showed systematic 

disagreement for some features; i.e., stronger agreement between observers A 

and B than the agreement for each of them with observer C. Perhaps, reappraisal 

of some definitions may further improve reliability, for instance, for Cerebellum 

wrapped around brainstem and Indentation (Figures 2 and 3). 

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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Figure 2   A. Axial T2-weighted brain MR image in 16-year-old child with open 

spinal dysraphism. The image clearly shows that the cerebellar 

hemispheres are wrapped around the brainstem (small white arrows).  

B. Axial T2-weighted brain MR image in 12-year-old child with open 

spinal dysraphism. In this image, it is questionable whether the cerebellar 

hemispheres are wrapped around the brainstem (small white arrows). 

Also note the small fourth ventricle (large white arrow).

Figure 3   A. Coronal T2-weighted brain MR image in 9-year-old child with open 

spinal dysraphism. The image clearly shows that the tentorium indents 

the cerebellar hemispheres (white arrows); B. Coronal T2-weighted brain 

MR image in 12-year-old child with open spinal dysraphism. In this 

image, it is questionable whether the tentorium indents the cerebellar 

hemispheres (white arrows).

A 

A 

B 

B 
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selective treatment of spina bifida, this study provides clinicians and researchers 

with features that unambiguously describe the Chiari II malformation.

 In addition to the qualitative method, a morphometric approach quantifying 

the morphological distortions may be helpful to overcome the problems of 

unreliable features. Morphometric measures are less subjective and may be less 

liable to interobserver variability. They may also provide cutoff points that 

distinguish between normal and abnormal brain development. The reliability 

and diagnostic performance of morphometric measures is subject of the second 

part of our study on the MR assessment of Chiari II malformation.

 In conclusion, the following morphological features can reliably be used to 

assess Chiari II malformation on MR images: downward herniation of the 

cerebellum, downward displacement of the medulla, pons, and fourth ventricle, 

medullary kinking, abnormally shaped fourth ventricle, hypoplastic tentorium, 

and beaked mesencephalic tectum. The use of these essential features may 

improve the MR assessment of Chiari II malformation by providing a solid basis 

for consensus on the diagnosis.

One of the limitations of this study was the possibility of context bias, i.e., 

knowledge from other sources that exaggerated interobserver agreement [26]. To 

deal with this phenomenon, we mixed the images expected to show Chiari II 

malformation with images expected to be without abnormalities and with 

images in which some features of hindbrain herniation could be present. 

However, observers may have tended to rate a feature according to the general 

appearance of the cerebellum, as complete blinding of each solitary feature was 

impossible. Another potential source of bias was the ratio between present and 

absent ratings as excess of one of the two affects the κ value [29]. In the current 

study, the proportion of present ratings per feature generally ranged from 25 to 

35% (Table 2). Within this small range, κ values can be safely compared among 

features. Yet, a few features were rated as present in considerably lower proportions. 

As the κ value will underestimate agreement in case of low proportions [29], 

reliability of the features in question may be better than expected from the 

actual κ values. Furthermore, response bias may have decreased κ values [29,30]. 

This is particularly relevant when a rating is ambiguous. Although the observers 

had the opportunity to rate ambiguous features as indefinable, response bias was 

not completely avoided, since observers A and B generally rated features more 

often as present than observer C. As this was clearly the case for Downward 

displacement pons and the κ value was just below the cutoff point of 0.8, underes-

timation of agreement may be relevant for this feature. Potential institutional 

bias may be another limitation of the study. All observers worked at the same 

academic hospital, which might have increased agreement. However, the 

observers differed in terms of experience and educational and professional 

background. These differences might have reduced the interobserver agreement. 

On the other hand, the participation of senior and junior specialists with 

different backgrounds implies that the results are particularly useful for 

radiologist and other specialists who might be less familiar with reviewing 

brain MR images. 

 Nevertheless, this study showed that among all features that are evaluated 

while diagnosing Chiari II malformation, only a subset seems to be reliable. 

Although the Chiari II malformation seems to be a clear entity, clinicians and 

researchers should be aware of the different interpretations of its features among 

observers. The use of reliable features may facilitate plain communication about 

Chiari II malformation in clinical and research settings. In the management of 

individual patients, decisions about treatment options should be based on 

clinical signs and symptoms in combination with reliable MR findings. Although 

Chiari II malformation is almost uniquely associated with open spinal 

dysraphism, there might be exceptions. In such cases, the reliable features 

presented might be useful. In discussions on prenatal surgery and postnatal 

Chapter 7 Essential features of Chiari II malformation in MR imaging: an interobserver reliability study
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Abstract

Purpose Brain MR imaging is essential in the assessment of Chiari II malformation 

in clinical and research settings concerning spina bifida. However, the inter-

pretation of MR images of the malformation is not always straightforward. 

Morphometric analyses of the extent of Chiari II malformation may improve the 

assessment. In an attempt to select appropriate morphometric measures for this 

purpose, we investigated the interobserver reliability and diagnostic performance 

of several morphometric measures of Chiari II malformation on MR images. 

Methods Brain MR images of 79 children (26 with open spinal dysraphism, 17 

with closed spinal dysraphism, and 36 without spinal dysraphism; mean age 10.6 

[SD 3.2; range 6 to 16] years) were evaluated. All children had been assessed for 

Chiari II malformation (defined as cerebellar herniation in combination with 

open spinal dysraphism; n = 23). Three observers blindly and independently 

reviewed the MR images for 21 measures of the cerebellum, brainstem, and 

posterior fossa in three planes. The interobserver reliability was assessed by an 

agreement index (AI = 1 – RRE) and the diagnostic performance by receiver 

operating characteristic analyses. 

Results Reliability was good for most measures, except for the degree of 

herniation of the vermis and tonsils. Most values differed statistically significantly 

between children with Chiari II malformation and children without Chiari II 

malformation. The measures Mamillopontine distance and Cerebellar width showed 

excellent diagnostic performance. 

Conclusions Morphometric measures reliably quantify the morphological 

distortions of Chiari II malformation on MR images and may provide additional 

tools to assess the severity of Chiari II malformation in clinical and research 

settings.

Introduction

Chiari II malformation is a complex developmental malformation of the central 

nervous system. It is characterized by a small posterior fossa and downward 

displacement of the cerebellum and brainstem through an enlarged foramen 

magnum (hindbrain herniation) [1]. Chiari II malformation is almost uniquely 

associated with open spinal dysraphism [2]. McLone and Knepper [3] hypothesized 

that leakage of cerebrospinal fluid through the spinal anomaly reduces the 

distention of the embryonic ventricular system. The decreased inductive pressure 

on the surrounding mesenchyme results in an abnormally small posterior fossa. 

Approximately one third of the patients with Chiari II malformation develop 

signs and symptoms of brainstem compression [4]. The mortality in this 

symptomatic group is 15 to 35% [5,6].

 Usually, Chiari II malformation is clinically diagnosed with the help of MR 

imaging to assess its severity. Although the malformation is characterized by a 

constellation of morphological features [7-11], the evaluation of MR images may 

not always be straightforward. A previous study showed that the assessment of 

several features is unreliable, because judgment of these features varied between 

observers (see Chapter 7). Assessment of MR images is complicated by the 

morphological diversity of the malformation, the qualitative nature of the 

features, and the fact that the distinction between normal and abnormal brain 

development is not defined by an unambiguous cutoff point. 

 Still, brain MR imaging plays a substantial role in clinical decision making 

regarding the management of children with spina bifida [9,10,12]. On the one 

hand, the discussion on selective treatment of severely affected newborn infants 

is still ongoing [13]. On the other hand, fetal imaging and prenatal surgery are 

becoming more important every day. Recently, a randomized trial showed 

important improvement of hindbrain herniation following prenatal surgery for 

spina bifida [14]. However, the assessment of Chiari II malformation may be even 

more complicated in prenatal MR imaging. A discrepancy of 41% was seen in 

judgment of the degree of hindbrain herniation in prenatal MR imaging studies 

[15]. When choices have to be made about prenatal and postnatal treatment 

options, morphometric analyses may improve the assessment of the severity of 

Chiari II malformation in clinical and research settings. Measurements of the 

cerebellum, brainstem, and posterior fossa may give quantitative information 

about the extent of the malformation and may provide objective cutoff points 

between normal and abnormal brain development. A few morphometric studies 

on Chiari II malformation have been reported [16-21]. These studies generally 

focused on the small posterior fossa and the degree of cerebellar herniation in 

the midsagittal plane, but not on dimensions in the axial or coronal plane. 

Chapter 8 Interobserver reliability and diagnostic performance of Chiari II malformation measures in MR...
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acquired in three planes for all 79 children. Images in the sagittal plane were 

available for 69 children (21 in the SDCM+ group, 20 in the SDCM– group, and 28 

in the reference group), images in the axial plane for 58 children (19 in the 

SDCM+ group, 13 in the SDCM– group, and 26 in the reference group), and images 

in the coronal plane for 51 children (18 in the SDCM+ group, 19 in the SDCM– 

group, and 14 in the reference group). 

 The Regional Committee on Research involving Human Subjects approved 

the study protocol. Prior to inclusion in the study, written informed consent was 

obtained from the parents of all 36 children and all children above 12 years of 

age taking part in the prospective research program.

Image analysis
All MR images were blinded for demographic and diagnostic information. The 

MR images of the three diagnostic groups were mixed and arranged by plane 

into three data sets: a sagittal set, an axial set, and a coronal set. These three data 

sets were reviewed independently by three observers: a junior pediatric neuro - 

logist (N.G.) with 6 years of experience in reviewing pediatric brain MR images, 

a senior pediatric neurologist (R.A.M.), and a senior neuroradiologist (T.V.), both 

with more than 20 years of experience in reviewing pediatric brain MR images. 

The images were available on compacts disks and were reviewed on an Agfa 

workstation or on a personal computer using Agfa software (Impax Client, 

release 4.5).

 The MR images were reviewed for 13 sagittal, four axial, and four coronal 

morphometric measures (Table 1). Most of the measures in the sagittal plane 

were selected from the literature. The measures in the axial and coronal plane 

were defined by the authors to appraise the width of the cerebellum, the degree 

of wrapping of the cerebellar hemispheres around the brainstem, and the degree 

of upward tentorial herniation of the cerebellar hemispheres. 

 First, the feasibility of the protocol was evaluated in a pilot study (n = 10), 

resulting in the final set of measures with their definitions. Measures were 

assessed to the nearest decimal of a millimeter. If an observer could not identify 

a landmark or could not assess the measure for other reasons, the measurement 

was classified as ‘indeterminable’. 

 

Statistical analysis
For each measure, the indeterminable measurements were tallied up per 

observer to assess the feasibility of each measure. If at least two observers 

considered a measure indeterminable in more than 5% of the MR images, the 

measure was qualified as unfeasible and subsequently excluded from the further 

analyses. 

Interobserver reliability and diagnostic performance of such morphometric 

measures are hardly addressed in the literature. 

 Therefore, we investigated the interobserver reliability and diagnostic 

performance of morphometric measures of the cerebellum, brainstem, and 

posterior fossa, not only in the midsagittal plane, but also in the axial and 

coronal plane, to select appropriate measures for the MR assessment of Chiari II 

malformation. 

Materials and methods

Patients
Brain MR images of 79 children (mean age 10.6 [SD 3.2; range 6 to 16] years) were 

evaluated. Of these children, 43 children had spinal dysraphism (26 with open 

spinal dysraphism and 17 with closed spinal dysraphism [22]). The majority of 

these children (n = 36) were recruited at the Outpatient Clinics of Pediatric 

Neurology of the Radboud University Nijmegen Medical Centre (RUNMC) as part 

of a prospective research program dedicated to the outcome and prognosis of 

spina bifida. MR images of the remaining seven children were obtained retro-

spectively from the archives of the Department of Radiology of the RUNMC, 

from which we also obtained brain MR images of 36 children without spinal 

dysraphism. Although MR imaging in these 36 children was performed with 

suspicion of or to rule out cerebral pathology, the MR images had been assessed 

as normal by an independent radiologist in a clinical setting before the start of 

the study. All 79 children were reassessed for Chiari II malformation using the 

criteria: cerebellar herniation on a sagittal MR image and the presence of open 

spinal dysraphism. Consequently, the study population consisted of three 

diagnostic groups: 23 children with spinal dysraphism and Chiari II malformation 

(SDCM+ group; mean age 11.4 [SD 2.9; range 6 to 16] years), 20 children with 

spinal dysraphism, but without Chiari II malformation (SDCM– group; mean age 

10.9 [SD 3.1; range 7 to 16] years), and 36 children without spinal dysraphism or 

cerebral pathology (reference group; mean age 9.9 [SD 3.2; range 6 to16] years).

MR imaging
All MR images were acquired using a 1.5 T MR imaging unit (Siemens Avanto; 

Siemens Medical Solutions, Erlangen, Germany) with a standard head coil. MR 

imaging in the 36 children who were part of the prospective research program 

consisted of T1-weigthed images in the sagittal plane and T2-weigthed images in 

the axial and coronal plane. The retrospectively obtained MR images were 

acquired using comparable sequences. For different reasons, MR images were not 

Chapter 8 Interobserver reliability and diagnostic performance of Chiari II malformation measures in MR...
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and Tonsil level were not observer dependent. The poor agreement for Vermis level, 

however, was observer dependent (Table 3). For all other measures, pairwise 

agreement did not differ among pairs of observers. 

The interobserver agreement of the feasible measures was quantified by the 

agreement index (AI), defined as AI = 1 – RRE, where RRE denotes the relative 

random measurement error expressed as the pooled coefficient of variation 

across patients of the observations made by the three observers. This AI can be 

seen as an extension to more than two observers of the AI defined for two 

observations per patient [23,24]. The relative random measurement error was 

used instead of the absolute random measurement error in order to compare 

measures among each other. An AI ≥ 0.90 was considered to indicate reliable 

interobserver agreement. Using this method, the overall interobserver 

agreement, the interobserver agreement between pairs of observers, and the 

interobserver agreement per diagnostic group were calculated. 

 The reliable measures were also analyzed for diagnostic performance 

regarding Chiari II malformation. Initially, the measurements of observer A 

were used for this purpose. Differences between the three diagnostic groups 

were analyzed with the Kruskal-Wallis test. Using the diagnosis of Chiari II 

malformation (defined as cerebellar herniation on a sagittal MR image and 

presence of open spinal dysraphism) as the reference standard, a receiver 

operating characteristic (ROC) curve was constructed for each measure. The area 

under the ROC curve (AUC) and its 95% confidence interval (CI) were calculated 

to assess the diagnostic performance. The cutoff value with the optimal 

sensitivity and specificity was ascertained from the curve. Subsequently, the 

consistency of the measures with a high diagnostic performance (AUC > 0.90) 

was assessed using the measurements of the other two observers. All statistical 

analyses were performed using SPSS software version 14.0.1. 

Results

Reliability
Most measures turned out to be feasible, except for Fourth ventricle level in the 

sagittal plane and Vermis length in the axial and coronal planes. These three 

measures were excluded from the further interobserver agreement and diagnostic 

performance analyses. 

 The interobserver agreement of the remaining measures is presented in 

Table 2. For most measures, the interobserver agreement was reliable (AI≥0.9), 

both overall and per diagnostic group. In general, the agreement was slightly 

weaker in the SDCM+ group than in the other two diagnostic groups, but this 

difference was only meaningful for Tentorial length. The agreement was very poor 

for Vermis level, Tonsil level, and Cisterna magna width. The interobserver agreement 

for pairs of observers showed that the poor agreement for Cisterna magna width 
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Table 2   Agreement indexesa of morphometric measures overall and per 
diagnostic group

Measure Overall SDCM+ SDCM– Reference 
group

Sagittal plane

Foramen magnum diameter 0.93 0.91 0.97 0.94

Vermis level 0.06 -0.25 0.25 0.26

Tonsil level 0.20 0.38 0.41 0.36

Kinking level 0.92 0.93 -b -b

Cerebellar height 0.92 0.87 0.97 0.98

Vermis length 0.93 0.93 0.92 0.94

Medulla length 0.92 0.90 0.93 0.93

Pons length 0.94 0.91 0.96 0.98

Pons thickness 0.95 0.93 0.97 0.95

Mamillopontine distance 0.91 0.94 0.90 0.89

Tentorial length 0.88 0.76 0.92 0.92

Cisterna magna width 0.40 -1.57 0.48 0.54

Axial plane

Cerebellar width 0.93 0.86 0.98 0.98

Hemispheral length left 0.88 0.87 0.87 0.91

Hemispheral length right 0.89 0.89 0.89 0.90

Coronal plane 

Cerebellar width 0.98 0.98 0.99 0.99

Hemispheral height left 0.91 0.89 0.92 0.91

Hemispheral height right 0.90 0.91 0.90 0.92

Overall agreement indexes ≥0.90 are indicated in italics
a Calculated as 1 – RRE; for further details, see section materials and methods
b Kinking was not present in the SDCM– group and in the reference group

SDCM+, spinal dysraphism with Chiari II malformation; SDCM –, spinal dysraphism without Chiari 

II malformation
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Diagnostic performance
In the sagittal and axial plane, all but one measure differed statistically significantly 

between the SDCM+ group and the other two diagnostic groups (Table 4). In the 

coronal plane, only Cerebellar width was statistically significantly smaller in the 

SDCM+ group than in the other two groups. No differences were present between 

the SDCM– group and the reference group. 

 The diagnostic performance of the measures based on the data from observer 

A is presented in Table 5 and illustrated by ROC curves in Figure 1. The AUC was 

substantial (>0.90) for five measures: Foramen magnum diameter, Pons length, Pons 

thickness, and Mamillopontine distance in the sagittal plane (Figure 2), and Cerebellar 

width in the axial plane (Figure 3), but sensitivity and specificity was not all that 

high for Pons length and Pons thickness, respectively. Consistency of the performance 

of these five measures was evaluated using the measurement values of observers 

B and C (Table 6). In this analysis, only Mamillopontine distance and Cerebellar width 

maintained their excellent diagnostic performance. Despite the high sensitivity 

and specificity in the primary analysis, Foramen magnum diameter failed to the 

consistency test. 
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Table 3   Agreement indexesa of three measures with poor interobserver 
agreement, overall and by observer pair

Measure Overall Observer pairs

A-B A-C B-C

Vermis level 0.06 0.69 -0.12 -0.19

Tonsil level 0.20 0.33 0.15 0.10

Cisterna magna width 0.40 0.39 0.41 0.39

a Calculated as 1 – RRE; for further details, see section materials and methods 

A, observer A; B, observer B; C, observer C

Table 4  Measurements (mean values in cm) by diagnostic groupa 

Measure SDCM+ SDCM– Reference 
group

P-valueb

Sagittal plane

Foramen magnum diameter 4.46 (4.35[16])c 3.62 3.64 (3.68[16]) <0.0001

Kinking level -3.56 -d -d

Cerebellar height 6.94 (6.8[21]) 5.84 5.68 (5.5[21]) <0.0001

Vermis length 3.60 (3.7[21]) 3.00 2.91 (3.0[21]) <0.0001

Medulla length 6.03 5.55 5.41 <0.05

Pons length 3.27 (2.9[20]) 2.59 2.56 (2.7[20]) <0.0001

Pons thickness 1.87 2.24 2.21 <0.0001

Mamillopontine distance 1.34 0.74 0.72 <0.0001

Axial plane

Cerebellar width 8.01 10.22 10.30 <0.0001

Hemispheral length left 5.18 5.86 5.73 0.06

Hemispheral length right 5.09 5.71 5.76 <0.001

Coronal plane

Cerebellar width 8.55 9.98 9.91 <0.001

Hemispheral height left 5.61 5.46 5.42 0.46

Hemispheral height right 5.46 5.40 5.50 0.77

a Data obtained from observer A
b P-values for differences between the three diagnostic groups based on the Kruskal-Wallis test
c Values between brackets are reference values from the literature
d Kinking was not present in the SDCM– group and in the reference group

SDCM+, spinal dysraphism with Chiari II malformation; SDCM–, spinal dysraphism without Chiari 

II malformation
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Discussion

On brain MR images, Chiari II malformation is generally evaluated based on a 

constellation of morphological characteristics in the midsagittal plane. The 

current study provides quantitative measures that may provide information 

about the extent or severity of Chiari II malformation. The measures Mamillopontine 

distance and Cerebellar width seem to be highly specific and sensitive for assessing 

Chiari II malformation. 

 In the present study, most measures turned out to be reliable, both overall 

and per diagnostic group. The literature provides some morphometric studies of 

Chiari II malformation [16-21,25], but only the study of Salman et al. [21] deals 

with interobserver agreement of several measures. As far as the same measures 
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Table 5   Results of ROC analyses showing the diagnostic performance of 
Chiari II malformation measuresa 

AUC 95% CI Sensitivity Specificity Cutoff 
value (cm)

Sagittal plane

Foramen magnum diameter 0.97 0.93-1.01 0.90 0.96 3.94

Cerebellar height 0.87 0.76-0.98 0.85 0.90 6.31

Vermis length 0.88 0.76-0.99 0.88 0.88 3.19

Medulla length 0.72 0.56-0.87 0.50 0.94 6.07

Pons length 0.95 0.89-1.01 0.80 0.98 2.96

Pons thickness 0.93 0.88-0.99 0.95 0.75 2.14

Mamillopontine distance 0.94 0.86-1.03 0.90 1.00 1.05

Axial plane

Cerebellar width 0.93 0.83-1.03 0.89 0.97 9.57

Hemispheral length left 0.68 0.51-0.85 0.53 0.90 5.22

Hemispheral length right 0.82 0.70-0.95 0.71 0.90 5.30

Coronal plane

Cerebellar width 0.82 0.68-0.97 0.76 0.88 9.43

Hemispheral height left 0.52 0.34-0.69 0.18 0.94 6.04

Hemispheral height right 0.61 0.42-0.79 0.53 0.81 5.80

a Data obtained from observer A 

AUC, area under the receiver operating characteristic (ROC) curve

Figure 1   Receiver operating characteristic curves for measures with a good 

diagnostic performance (AUC > 0.90). See Table 5 for further details. 
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Figure 2   A. Sagittal T1-weighted brain MR image of a 16-year-old child with 

open spinal dysraphism and Chiari II malformation. The arrows indicate 

Foramen magnum diameter (FM), Pons length (PL), and Pons thickness (PT);  

B. Sagittal T1-weighted brain MR image of an 8-year-old child with open 

spinal dysraphism and Chiari II malformation. The arrow indicates 

Mamillopontine distance (MPD).
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were studied, our results agree with the previous findings. The additional value 

of our study is that we investigated measures in three planes and in different 

diagnostic groups. The interobserver agreement in the Chiari II malformation 

group was slightly lower than in the unaffected groups. This may be due to 

anatomical distortions, which may hamper precise identification of landmarks. 

However, this did not affect reliability to a large extent. 

 Unreliable measures in the present study were predominantly complex 

measures, depending on reference lines, which are susceptible to differences in 

interpretation as well. For example, the disagreement found for Foramen magnum 

diameter will have contributed to the disagreement for the measures that depend 

on it, such as Vermis level.

 The unreliability of Vermis level and Tonsil level was remarkable. Blurred boundaries 

in a crowed posterior fossa and upper cervical spinal canal may have hampered 

precise delineation of the tonsils and vermis. Consequently, these structures 

could not be distinguished precisely. On the other hand, the disagreement for 

Vermis level may also be observer dependent, as two of the three observers 

moderately agreed on Vermis level, whereas these two observers systematically 

disagreed with the third observer (Table 3). To elucidate this, we performed a 

post hoc analysis using the most caudal extent of cerebellar tissue (vermis or 

tonsil) as a variable. As this derivative measure also failed to be reliable (AI=0.29), 

however, observer dependency seems to play a minor role. In contrast, Salman et 

al. [21] presented a comparable measure ‘herniation distance’ as reliable, but 

they used other statistical methods in a smaller sample size. Although cerebellar 

herniation remains a key feature of Chiari II malformation and its morphological 

appearance can reliably be judged on MR images (see Chapter 7), the present 

study shows that measuring the degree of cerebellar herniation can be unreliable. 

 The majority of the reliable measures differed statistically significantly between 

children with Chiari II malformation and unaffected children (Table 4). These 

differences are in accordance with the morphogenesis of Chiari II malformation. 

Increased Cerebellar height and Vermis length and decreased Cerebellar width support 

the hypothesis of a small posterior fossa [3] with squeezing of the vermis and 

enlargement of the midsagittal vermis area [21]. An increased Mamillopontine 

distance results from caudal displacement of the brainstem and pons. For a few 

measures, reference values have been reported in the literature (Table 4). Our 

values for Foramen magnum diameter corresponded well with the values reported 

by Aboulezz et al. [16] and our values for Cerebellar height and Vermis length with 

the values reported by Salman et al. [21]. The Pons length in affected children in 

our study was longer than the Pons length reported by Tsai et al. [20]. A different 

identification of the inferior pontine notch and a different age range of the 

investigated population might explain this difference.
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Table 6   Consistencya of the measures with the best diagnostic performance 
in the ROC analyses

Measure Sensitivity Specificity Cutoff value (cm)

Foramen magnum diameter 0.69 0.79 3.94

Pons length 0.68 0.96 2.96

Pons thickness 0.93 0.59 2.14

Mamillopontine distance 0.84 0.97 1.05

Cerebellar width (axial plane) 0.89 0.92 9.57

a Tested by applying the results of the ROC analysis (see Table 5) to the data obtained from observer 

B and C

Figure 3   A. axial T2-weighted brain MR image of a 16-year-old child with open 

spinal dysraphism and Chiari II malformation. The arrow indicates 

axial Cerebellar width; B. Coronal T2-weighted brain MR image of a 

13-year-old child with open spinal dysraphism and Chiari II malformation. 

The arrow indicates coronal Cerebellar width. 
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a better reference standard is currently not available. Finally, we could not take 

into account a possible age effect even though brain dimensions change in a 

growing child. However, Salman et al. [21] showed that MR measurements of the 

posterior fossa did not correlate with age in children with Chiari II malformation. 

In the present study, the strong differences between affected and unaffected 

children seem to outweigh the influence of age. 

 In conclusion, using morphometric measures represent a reliable and 

feasible method to quantify the morphological distortions of Chiari II 

malformation on MR images. These measures are easily used on standard MR 

images without the need of specific software. They appraise different parts of the 

cerebellum, brainstem, and posterior fossa providing quantitative information 

about the extent of Chiari II malformation in three dimensions. The measures 

may have added value in assessment of severity of Chiari II malformation in 

clinical decision making as well as in research settings, such as studies on the 

effect of prenatal surgery for spina bifida. The excellent diagnostic performance 

of Mamillopontine distance and Cerebellar width makes these measures particularly 

helpful in cases in which the diagnosis of Chiari II malformation is ambiguous. 

The substantial differences in the measurement values between affected and 

unaffected children warrant the search for cutoff points. The ROC analyses 

showed reasonably accurate cutoff points for more than half of the reliable 

measures (Table 5), but only two measures, Mamillopontine distance and Cerebellar 

width, showed consistent diagnostic performance. Some caution is justified, however. 

From the ROC analyses, very precise cutoff points were calculated, but this 

amount of precision will not be feasible in clinical practice. 

 Clinicians should be aware of the imprecise judgment of the degree of 

cerebellar herniation in the midsagittal plane. The reliable measures presented 

are more suitable to assess the morphological distortions. They appraise the 

cerebellum and brainstem, not only in the midsagittal plane, but also in the 

axial and coronal plane. Since measures differ substantially between affected 

and unaffected children, they are considered to be of diagnostic value. Cerebellar 

width provides an indication of the size of the posterior fossa, and Cerebellar height 

and Vermis length reflect the enlarged vermis area. Mamillopontine distance, Pons 

length, and Medulla length provide quantifications of downward displacement and 

stretching of the brainstem. Although Hemispheral length and Hemispheral height 

were reliable measures, they did not differ substantially between affected and 

unaffected children and thus failed to provide objective cutoff values for 

wrapping of the cerebellar hemispheres around the brainstem and upward 

tentorial herniation, respectively. The reliable measures might be suitable to 

assess severity of clinical signs and symptoms. However, the association between 

measurements and severity of Chiari II malformation is a matter of further 

study.

 The results of this study may have implications for prenatal surgery for 

spina bifida as well. Intrauterine spina bifida repair appears to reverse the degree 

of hindbrain herniation [14,26,27]. The currently used scoring system might be 

imprecise, as it is based on the degree of vermis herniation and the position of 

the fourth ventricle. The present study provides reliable measures, which may be 

more suitable to objectively evaluate the effect of prenatal surgery on Chiari II 

malformation in three dimensions. However, the results may not simply be 

transformed to prenatal imaging, since unshunted hydrocephalus might have 

an effect on the measures in the prenatal setting. In particular, this may be 

relevant for Mamillopontine distance, as this distance may decrease as a result of 

raised intracranial pressure [28]. The effect of hydrocephalus may have less 

influence on most other measures. However, additional evaluation of the 

measures in a prenatal setting is recommended. 

 The study also had some limitations. Due to its partly retrospective design, 

the study population comprised a heterogeneous set of MR images. Furthermore, 

the reference standard used in the ROC analyses might be questionable. However, 
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Spina bifida is a complex and heterogeneous congenital malformation of the 

nervous system with pathology at multiple levels along the neural axis resulting 

in life-long disabilities and handicaps. Discussions on whether or not to treat 

severely affected newborn infants are still current [1], while fetal imaging and 

prenatal surgery are becoming more important nowadays [2,3]. The choices that 

have to be made about such prenatal and postnatal treatment options are 

complicated by the fact that the outcome for an individual infant with spina 

bifida is hardly predictable. In this final chapter, the findings described in this 

thesis are put in perspective related to these issues with a focus on the research 

questions formulated in Chapter 1. The main findings are discussed in light of 

the multilevel pathology of spina bifida and the diagnostic and prognostic values 

of the instruments used. Methodological and clinical considerations as well as 

research implications and future perspectives are presented. 

Neurophysiological studies

Main findings in light of the multilevel pathology 
As described and illustrated in Chapter 1, the pathology in spina bifida includes 

malformations at multiple levels along the neural axis. Consequently, motor 

impairment in the lower limbs may result from lower motor neuron (LMN) and 

upper motor neuron (UMN) dysfunction. LMN dysfunction in particular results 

from neurosegmental pathology in the spinal anomaly, whereas UMN 

dysfunction may result from pathology at several levels along the corticospinal 

tract. The neurophysiological studies in this thesis provide some new insights in 

the proportional LMN and UMN dysfunction in relation to the multilevel 

pathology of spina bifida.

Lower motor neuron function
Lower motor neurons are alpha-motor neurons (synonym: anterior horn cells) 

located in the ventral horns of the spinal cord with axons leaving the spinal cord 

through the ventral roots to innervate voluntary muscles. They can roughly be 

divided into fast-conducting thick fibres and slow-conducting thin fibres. The 

lower motor neuron and the muscle fibres innervated by its axon are called a 

motor unit.

 In Chapters 2, 3 and 4 we showed that a certain degree of LMN function is 

present in virtually all affected spinal segments in newborn infants with spina 

bifida. This is not surprising in muscles that are paretic. However, we also 

demonstrated LMN function in paralytic muscles by obtaining reproducible 

compound muscle action potentials (CMAPs) after percutaneous electrical 
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transcranial magnetic stimulation (TMS), but this method did not result in 

reproducible MEPs. These findings are is in agreement with experiences of other 

investigators, as reliable transcranial MEPs without facilitation are generally not 

obtainable in infancy [12-14]. Therefore, we are not able to draw clear conclusions 

about UMN function in neonatal spina bifida. In the literature, assumptions on 

UMN function in newborn infants are mainly based on observational studies 

and are somewhat inconsistent. Stark and Drummond [5,6] postulated that lower 

limb weakness results from UMN dysfunction rather than LMN dysfunction 

based on observations of voluntary and reflex activity in the lower limbs and on 

responses to stimulation of the neuroplacode. Sival et al. [15] suggested preserved 

neural conduction through the spinal anomaly based on the concurrence of 

lower limb movements and general movements, and as such, they suggested that 

UMN input is preserved. In addition to these assumptions, we like to speculate 

that the gradual cranio-caudal decrease in LMN function in the affected spinal 

segments might be secondary to a decreased connectivity with UMNs in the 

more caudal affected segments, as the corticospinal tract fibers leading to these 

caudal segments may be more vulnerable than the fibers leading to cranial 

affected segments (Chapter 3). Therefore, UMN dysfunction might be the primary 

factor in lower limb motor impairment in newborn infants with spina bifida. 

 In contrast to the results in newborn infants, we were able to investigate UMN 

function in school-age children with spina bifida (Chapter 6). In this study, 

reproducible MEPs were obtained after TMS and UMN dysfunction was demonstrated 

by reduced transcranial MEP areas and prolonged central motor conduction times 

(CMCTs) in children with spina bifida compared to control children without spina 

bifida. The transcranial MEP area not only reflects the excitability of the motor 

cortex and the integrity of the corticospinal tract (UMN), but also the excitability 

of spinal motor neurons and the conduction along the peripheral motor pathways 

(LMN) [16]. Therefore, the reduced transcranial MEP areas in our study may reflect 

both UMN and LMN dysfunction. Considering the substantial reduction in 

transcranial MEP areas not only in the lower limb muscles but also in the upper 

limb muscles (See Table 3 in Chapter 6), it is unlikely that this reduction is due to 

LMN dysfunction alone. Above all, a prolonged CMCT indicates UMN dysfunction, 

as it includes the time needed for excitation of cortical cells, conduction via the 

corticospinal tract, and excitation of  spinal motor neurons sufficient to exceed 

their firing threshold [17]. Consequently, a prolonged CMCT may result from 

abnormal cortical excitation (indirect versus direct excitation of the corticospinal 

tract), dys- or demyelination of the corticospinal tract, loss of large fast-conducting 

corticospinal neurons, or impaired summation of descending volleys at spinal 

motor neurons [17-19]. All these mechanisms may be involved in spina bifida, as is 

discussed in the paragraphs below. 

stimulation, and motor evoked potentials (MEPs) after lumbosacral magnetic 

stimulation in these muscles. In agreement with our findings, other authors also 

reported similar responses in lower limbs muscles of infants with spina bifida 

[4-6]. In addition, the presence of LMN function is supported by neuropathologi-

cal studies, which showed that ventral horns are usually present and often 

contain large numbers of anterior horn cells [7]. From these cells, nerve roots 

extend at the proper position in the malformed spinal cord innervating 

corresponding muscles [8]. On the other hand, Sival et al. [9] reported that 

disappearance of neonatal lower limb movements indicates additional 

progressive LMN dysfunction based on the presence of denervation potentials 

and the disappearance of muscle stretch reflexes in the first postnatal week. We 

also observed disappearance of lower limb movements in newborn infants, but 

according to our neurophysiological findings, this disappearance does not 

implicate complete loss of LMN function. Moreover, we showed that the 

neonatally present LMN function is at least partly preserved throughout the 

childhood years, because substantial CMAPs and lumbosacral MEPs were still 

obtainable in school-age children with spina bifida, also in paralytic muscles 

(Chapter 6). These findings are supported by neuropathological examinations of 

peripheral nerves that revealed preserved nerve bundles containing small 

numbers of normal axons in children with spina bifida [10].

 The latencies of CMAPs and lumbosacral MEPs provide additional information 

about LMN function. In children with spina bifida, we considered these 

peripheral latencies as relatively unaffected, as they did not differ essentially 

from latencies in control children without spina bifida. These findings suggest 

that extensive dys- or demyelination of peripheral motor axons or loss of fast-

conducting thick motor neurons are unlikely. 

 From the associations observed between the CMAP area and neurological 

impairment, we presumed a gradual cranio-caudal decrease in lower motor 

neuron function in affected spinal segments (Chapter 3). This assumption is 

supported by a gradual cranio-caudal reduction of motor neuron populations in 

affected spinal segments as seen in neuropathological examinations [11].

 In conclusion, functional motor units are present in almost all affected 

spinal segments in neonatal spina bifida and are at least partly preserved with 

relatively intact conduction ability during the childhood years.

Upper motor neuron function
Upper motor neurons are motor neurons with their cell bodies in the cerebral 

cortex and their axons descending into the spinal cord to make synaptic 

connections with spinal alpha-motor neurons in the ventral horns. We attempted 

to investigate UMN function in newborn infants with spina bifida using 
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known from the literature, voluntary muscle contraction during TMS results in 

shorter MEP latencies and larger MEP areas [30]. In our study, this facilitatory 

effect was substantially decreased in school-age children with spina bifida (See 

Figure 2 in Chapter 6). Although the physiology of facilitation, in which both 

spinal and cortical mechanisms seem to be involved, is not completely understood 

[31], gray matter abnormalities are likely to interfere with the facilitatory effects 

at cortical level. 

 In conclusion, our findings show that UMN dysfunction contributes substantially 

to motor impairment in spina bifida and support a supraspinal localization of 

UMN dysfunction. 

Upper motor neuron in relation to lower motor neuron dysfunction
The findings in this thesis show that both UMN and LMN dysfunction are 

involved in motor impairment in the lower limbs, but we cannot draw firm 

conclusion about their proportional contribution to motor impairment. Yet, we 

might speculate that UMN dysfunction plays a central role and that LMN 

dysfunction is secondary to UMN dysfunction. Findings that may support this 

assumption are the gradual cranio-caudal decrease of LMN function in affected 

spinal segments in neonatal spina bifida and the clearly prolonged central motor 

conduction times in contrast to the relatively unaffected peripheral motor 

conduction times in children with spina bifida. In addition to these findings, we 

speculate about circumstantial support for these assumptions focusing on the 

establishment of the synaptic connections between UMNs and LMNs during 

spinal cord development. First, in the complex embryonic development of the 

spinal cord, the axons of the corticospinal tract descend into the spinal cord to 

make synaptic connections with spinal motor neurons [32,33], which originate 

in the ventral section of the neural tube [34,35]. The descend of corticospinal 

tract axons in the lateral sections of the spinal cord may be disturbed to a larger 

extent than the development of anterior horn cells in the relatively sheltered 

ventral section. Second, functional synaptic corticospinal connections to spinal 

motor neurons are only established during the final trimester of gestation in 

normal development [36]. In spina bifida, the ‘second hit’ to the vulnerable 

neuroplacode may harm proper establishment of these synaptic connections. 

Furthermore, spinal ischemia resulting from aberrant spinal cord blood vessels 

in combination with reduced blood flow during delivery [37], may further harm 

these connections, as we know from experimental studies that synaptic activity 

is very vulnerable to ischemia [38]. In addition, ischemia-induced synaptic failure 

might be an explanation for the disappearance of lower limb movements in early 

neonatal life. Third, UMNs are involved in activity-dependent maturation of 

LMNs during a critical period of normal development [36]. If synaptic connections 

Regarding the complex neuropathology of spina bifida, UMN dysfunction may 

have its origin at multiple levels along the neural axis (see Figure 1 in Chapter 1). 

Considerations about UMN dysfunction in relation to these levels are discussed 

in a caudo-cranial direction. 

 Most caudally, the axonal endings of the corticospinal tract are likely to be 

disrupted in the spinal anomaly. This disruption may be more substantial in 

caudal than in cranial affected spinal segments. The corticospinal tract in fused 

spinal segments above the spinal anomaly may be disrupted due to tethering of 

the spinal cord or due to syringomyelia. Based on our findings, we cannot draw 

clear conclusion about these corticospinal tract levels, but abnormal myelination 

due to traction on the spinal cord or syringomyelia may be associated with a 

prolonged CMCT. Abnormal myelination of the spinal cord is frequently seen in 

neuropathological examinations [20].

 The origin of UMN may be located at a supraspinal level as well. As similar 

results regarding UMN dysfunction were found for the lower limb muscles and 

the biceps brachii muscle (Chapter 6), part of the origin should be located above 

the neurosegmental innervation of the biceps brachii muscle. This may be at 

infratentorial level, where the corticospinal tract could be affected either by mal- 

development as part of Chiari II malformation or by damage due to compression 

in a crowded posterior fossa. Clinical signs of spasticity are frequently seen in 

children with symptomatic Chiari II malformation [21-23], providing further 

support for the involvement of Chiari II malformation in UMN dysfunction.

 Furthermore, supratentorial malformations, whether or not related to 

hydrocephalus, may be involved in UMN dysfunction as well. In recent years, 

advanced imaging techniques revealed detailed cerebral white and gray matter 

abnormalities in spina bifida [24]. Regarding white matter, a diffusion tensor 

imaging study showed extensive abnormalities in white matter tracts in 

individuals with spina bifida [25]. However, the corticospinal tract at the 

posterior limb of the internal capsule appeared to be relatively unaffected [26]. 

Therefore, it is difficult to relate the prolonged CMCT in our study to the white 

matter abnormalities in the diffusion tensor imaging study. Regarding gray 

matter, malformations of cortical development in spina bifida have been reported 

before [27,28]. More recently, advanced quantitative MR imaging revealed 

important abnormal patterns of thickening, thinning, and gyrification of the 

cortex [24,29]. Although research on these cortical abnormalities is focused on 

cognitive impairment, it is conceivable that these abnormalities are involved in 

motor dysfunction as well. The abnormal patterns of gray matter might be 

substrates for our findings on UMN dysfunction, as abnormal cortical excitation 

may result in prolonged CMCTs and reduced transcranial MEPs. In addition, gray 

matter abnormalities may be involved in facilitation of transcranial MEPs. As 
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Other methodological considerations concern TMS, as TMS may result in direct 

corticospinal tract excitation or in indirect corticospinal tract excitation by 

transsynaptic excitation from cortical interneurons [16]. In healthy subjects, 

high TMS intensities mainly results in direct excitation and low TMS intensities  

in indirect excitation [19]. In spina bifida, however, we are unaware of the 

proportions of direct and indirect excitation relative to TMS intensity. 

Determination of motor thresholds or stimulus-response curves might have 

provided more information about cortical excitability [17]. Since we performed 

TMS at 100% intensity and did not use a predefined percentage above threshold, 

the degree of intensity above threshold may have differed between control 

children and children with spina bifida or among children with spina bifida. 

These differences may have influenced the results to a certain extent, which 

cannot be predicted.

 Spinal magnetic stimulation results in activation of motor nerve roots at the 

site where they leave the intervertebral foramen. At this site, the magnetic field 

focuses and the stimulus threshold is low. As the spine insulates the spinal cord, 

direct stimulation of the spinal cord is impossible [40,41]. In spina bifida, 

however, the site of activation might be at another level, due to the abnormal 

spinal anatomy. Theoretically, excitation could then occur at corticospinal level. 

However, the unaffected peripheral latencies in children with spina bifida as 

compared to control children (Chapter 6) do not support this hypothesis. 

Furthermore, spinal magnetic stimulation does not result in supramaximal 

responses in healthy subjects, since axons of fast-conducting motor neurons are 

stimulated predominantly [41,42]. In spina bifida, however, the absence of bony 

insulation and the more superficial localization of neural tissue may result in 

the activation of relatively more axons. The lumbosacral MEP areas in our study 

support this assumption, as the MEP areas in gastrocnemius and tibialis anterior 

muscles seem to approach the supramaximal CMAP areas generated in the same 

muscles in children with spina bifida, whereas the MEP areas are clearly smaller 

than the CMAP areas in children without spina bifida (See Tables 1 and 2 in 

Chapter 6). This may explain the more obvious differences between children 

with spina bifida and control children for the CMAP areas than for the 

lumbosacral MEP areas.

 The CMCTs were calculated from the differences between the latencies of the 

transcranial and lumbosacral MEPs. Considering the fact that lumbosacral 

magnetic stimulation results in activation of motor nerve roots at the site where 

they leave the intervertebral foramen, the calculated CMCT includes part of the 

proximal spinal motor neuron. The contribution of this proximal part is 

relatively small and will be equal in children with spina bifida and control 

children, because the lumbosacral MEP latencies did not differ between these 

between UMNs and LMNs are not well established, the LMNs will fail to maturate 

normally secondary to synaptic dysfunction. Finally, transsynaptic degeneration 

due to insufficient corticospinal input may result in LMN loss as well [39]. 

Methodological considerations
To our best knowledge, the neurophysiological studies in this thesis are the first 

studies aiming to investigate corticospinal and spinal motor function in spina 

bifida using neurophysiological tools, such as magnetic stimulation. The 

strengths of the studies are the participation of newborn infants as well as 

school-age children, the prospective study design regarding the investigations in 

newborn infants, and the participation of an appropriate control group in the 

study on school-age children. During the study period, virtually all newborn 

infants born at or referred to our centre were included in the prospective study 

and they were all investigated before surgical closure of the spinal anomaly. All 

participants were systematically evaluated according to the study protocol in 

which we used generally accepted and well-established neurophysiological 

methods and clinical impairment measures. 

 The studies also had some limitations. The sample sizes of the cohorts were 

smaller than anticipated at at the start of the study. Important reasons for the 

small neonatal cohort were a decreasing prevalence of live born children with 

spina bifida in the Netherlands during the study period and loss of follow-up due 

to migration or withdrawal of consent. In the cohort of school-age children, the 

willingness to participate was lower than expected. The main reason for non-

participating was the burden that the research protocol placed upon children 

and parents. Although we are under the impression that the non-participating 

children did not differ from the included children, non-response bias cannot be 

ruled out completely. Despite the small sample sizes, the results provided new 

pathophysiological insights and knowledge about the diagnostic value of the 

neurophysiological instruments in spina bifida. However, the sample size of the 

neonatal cohort was too small to draw firm conclusions about the prognostic 

value of the neurophysiological instruments. 

 Participation of a neonatal control group would have been interesting from 

a pathophysiological point of view. However, in the initial phase of our research 

program, the focus of interest was the diagnostic value of CMAPs and MEPs in 

differentiating between mildly and severely affected infants, which did not need 

a control group. With the expansion of the focus to pathophysiology, a neonatal 

control group and longitudinal measurements could have provided additional 

insights in the development of motor function in spina bifida. We attempted to 

perform magnetic stimulation at the first follow-up moment at two years of age. 

However, we were unable to obtain reliable responses due to lack of cooperation. 
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spasticity are seen in less than 50% [55-57], whereas our findings showed UMN 

dysfunction in almost all children. TMS may be particularly helpful to detect 

subclinical deterioration of UMN function. For example, secondary tethering of 

the spinal cord is commonly seen in growing children with spina bifida. As this 

complication is generally associated with additional UMN dysfunction, TMS may 

be helpful in an early recognition of a tethered spinal cord.

 In newborn infants with spina bifida, we have shown that percutaneous 

electrical nerve stimulation and lumbosacral magnetic stimulation are 

applicable and well tolerated (Chapter 2). CMAPs and MEPs provide a quantitative 

estimate of residual LMN function in affected spinal segments in these infants. 

Despite strong associations between the neurophysiological parameters and the 

neurological impairment levels at neonatal age, the prognostic value of these 

parameters appeared to be weak. The neonatal MEP and CMAP areas had some 

prognostic value for neurological outcome and walking ability, but the clinically 

assessed neonatal neurological impairment levels showed better prognostic 

value (See Table 4 in Chapter 4). Considering the substantial involvement of UMN 

dysfunction in motor impairment, as demonstrated in school-age children, the 

weak prognostic value may be explained by the fact that the assessed neonatal 

MEPs and CMAPs only reflect LMN function. Furthermore, it should also be 

noted that a substantial part of children with spina bifida will achieve walking 

ability beyond the age of two years [58]. Therefore, the prognostic value for 

walking ability at a later age might be somewhat better. 

 In addition to motor dysfunction in a narrow term, other factors may 

influence the neurodevelopmental outcome in spina bifida. The extent of sensory 

impairment is strongly related to the outcome, for example. In the studies of 

Hunt and Oakeshott [59,60], the degree of neonatal sensory impairment turned 

out to be predictive for ambulation, need of daily care, and community 

participation in adulthood. Other factors, such as balance disturbances, energy 

expenditure, scoliosis, and joint contractures may influence the outcome as well 

[56,61]. 

Brain MR imaging studies

In addition to the spinal anomaly, Chiari II malformation is another important 

developmental malformation in spina bifida. The Chiari II malformation is 

characterized by a small posterior fossa and downward displacement of the 

cerebellum and brainstem through an enlarged foramen magnum, and it may 

cause substantial morbidity and mortality [23,62-64]. The malformation is 

usually diagnosed using MR imaging. However, the MR interpretation of the 

children. Other methods to measure the CMCT are also available. Using the 

F-response latency, the calculated CMCT might be more precise [18]. However, 

F-responses are highly variable in latency, they may be difficult to obtain in 

affected nerves, and they are difficult to interpret in multisegmentally 

innervated muscles. Moreover, performing 10 to 20 reliable electrical stimuli 

may be a large burden to children. Using a triple stimulation technique, the 

corticospinal motor conduction time can be measured very precisely [43]. 

However, this method is only suitable for upper limb muscles and is very painful 

especially when Erb’s point is electrically stimulated. 

Clinical diagnostic and prognostic implications
Nerve conduction studies have proven to be of clinical usefulness in neuropathies 

and other neuromuscular disorders in adults and children for many years. 

Magnetic stimulation is a relatively new neurophysiological tool providing 

information about the excitability of the motor cortex and the functional 

integrity of the corticospinal tract as well as the peripheral motor pathways [16]. 

The method is safe and non-invasive and it is easily used and well-tolerated 

[44,45]. 

 In adults, magnetic stimulation has proven to be of diagnostic value in 

neurological disorders, such as myelopathy, amyotrophic lateral sclerosis, multiple 

sclerosis, and stroke, while prognostic value is reported for multiple sclerosis 

and stroke as well [16,17]. In children, investigations using magnetic stimulation 

provided additional understanding of the development and maturation of the 

central nervous system and its reorganization potential following early brain 

injury [46]. In children with cerebral palsy, TMS investigations revealed 

projections from the contra-lesional hemisphere participating in motor control 

of paretic hand muscles [47-49]. TMS also appeared to have some prognostic value 

regarding early brain injury [47,50,51]. In addition, TMS can demonstrate 

corticospinal tract involvement in complex neurological disorders, despite the 

absence of significant abnormalities on MR imaging [46,52-54]. 

 In our studies, the MEP and CMAP areas seem to reflect the severity of 

neurological impairment, as severely affected newborn infants and school-age 

children had smaller MEP and CMAP areas than mildly affected subjects 

(Chapters 3, 4, and 6). Although the distinction between mildly and severely 

impaired children may be apparent from neurological examination, the neuro-

physiological tools may be helpful in quantifying the degree of neurological 

impairment. Furthermore, TMS may have a diagnostic value in revealing 

clinically hidden UMN dysfunction. The clinical neurological picture of spina 

bifida is generally dominated by flaccid paresis of the lower limbs, from which 

the presence of UMN dysfunction might be underestimated. Clinical signs of 
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and shape of the pons was weak (See Table 4 in Chapter 7), whereas measurements 

of the thickness, length and position of the pons were particular reliable and 

showed clear differences between Chiari II malformation and normal hindbrain 

morphology (See Tables 2 and 4 in Chapter 8). 'Wrapping' of the cerebellum 

around the brainstem and 'towering' of the cerebellum were unreliable features 

as well. These features describe the abnormal extension of the cerebellar 

hemispheres in the axial and coronal plane, respectively. In our attempt to assess 

these features quantitatively by measuring the hemispheral length and height 

(See Table 1 in Chapter 8), we found that these measures were reliable, but failed 

to be distinctive between Chiari II malformation and normal hindbrain morphology. 

Therefore, these measures are just as unsuitable as their corresponding features.

 Most of the reliable measures pertain to the morphological abnormalities in 

Chiari II malformation, which can be seen from the substantial measurement 

differences between children with and without Chiari II malformation (See 

Table 4 in Chapter 8). Therefore, we expect these measures to be useful in a 

severity assessment of the malformation. Two measures, Cerebellar width and 

Mamillopontine distance, showed clear diagnostic potential, as they were highly 

sensitive and specific for Chiari II malformation. Cerebellar width is closely related 

to the small posterior fossa, which is a central aspect of the pathology of Chiari 

II malformation [76], while Mamillopontine distance reflects the caudal displacement 

of the brainstem. However, the dimension of this measure is very small, which 

could be a source of measurement errors. 

Methodological considerations
Prior to the study, an extensive literature search was performed in order to 

incorporate all known features and measures of the Chiari II malformation in 

the study. Because we felt that measures to appraise the malformation in the 

axial and coronal planes were lacking, we defined new measures as well.

 Several other MR imaging studies regarding the Chiari II malformation are 

described in the literature (see Chapters 7 and 8 for an overview). In contrast to 

these studies, our study addressed interobserver reliability of features and measures 

as well as the diagnostic performance of Chiari II malformation measures, which 

makes the study original. Further added value can be found in our presentation 

of measures in three planes with their reliability assessed in different diagnostic 

groups.

 All observers worked at the same academic hospital at the time of the study, 

which might have increased the interobserver agreement through institutional 

bias. However, the observers differed in terms of experience and educational and 

professional background, which guarantees a realistic diversity in observers 

comparable to clinical practice.

malformation may not always be straightforward due to its heterogeneity and 

an abundance of morphological features. This may be particularly relevant in 

the assessment of its severity in decision-making processes regarding the 

treatment of spina bifida. 

Main findings
The brain MR imaging studies described in this thesis identified reliable morpho- 

logical features of the malformation (Chapter 7) and provided morphometric 

measures that can be used to quantify the extent of the malformation (Chapter 8). 

The use of these features and measures may improve the MR assessment of Chiari II 

malformation. 

 The unreliability of several features of the Chiari II malformation supports 

our hypothesis that the MR interpretation is not straightforward. Most of the 

features studied were originally derived from post-mortem examinations or 

computed tomography studies [65-70]. With the introduction of MR imaging, 

they were simply applied to rate MR images without critical appraisal of their 

compatibility for MR images. To our best knowledge, our study is the first in 

which the reliability of these features was investigated. We showed that several 

features are not reliable enough to assess Chiari II malformation on MR images. 

 The main deformity in Chiari II malformation is herniation of the cerebellum 

through an enlarged foramen magnum. In the literature, this herniation is 

inconsistently termed as cerebellar [71], vermis [22,23,72], or tonsil herniation 

[73,74]. Our study demonstrated that it is possible to reliably assess whether or 

not herniation of any part of the cerebellum is present on MR images, but that 

distinguishing vermis and tonsil herniation from each other is unreliable. In 

addition, neuropathological examinations showed that herniation of the vermis 

without herniation of the tonsils does not occur [75]. Therefore, we recommend 

to use only the term cerebellar herniation in the MR assessment of Chiari II 

malformation. Other typical features of the Chiari II malformation, like 

downward displacement of the medulla and fourth ventricle, medullary kinking, 

and beaked tectum appeared to be reliable features as well, but these were seen 

less frequently than cerebellar herniation (See Table 3 in Chapter 7). Therefore, 

we recommend that the diagnosis Chiari II malformation should be based on the 

presence of open spinal dysraphism in combination with cerebellar herniation 

in the sagittal MR plane. 

 In contrast to the morphological features, most morphometric measures 

investigated turned out to be reliable in quantifying the morphological abnormalities. 

This discrepancy is not surprising, as quantitative measures are easier to define 

than qualitative features. As such, some measures may substitute unreliable 

features. For example, the interobserver reliability for the morphological position 
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settings with broad accessibility to all clinicians working with children with 

spina bifida. It is important that these clinicians are informed about the reliability 

and diagnostic value of features and measures on conventional MR images. The 

features and measures presented in this thesis are particularly useful in routine 

clinical practice, as they are easy to be assessed by radiologists as well as by 

clinicians who may be less familiar with reviewing MR images.

 In addition, clinicians should be aware of the imprecise judgment of the 

degree of cerebellar herniation in the midsagittal plane. The measures presented 

in Chapter 8 are more suitable to quantitatively assess the morphological 

abnormalities. They appraise the cerebellum and brainstem, not only in the 

midsagittal plane, but also in the axial and coronal plane providing reliable 

quantifications of most morphological abnormalities in Chiari II malformation. 

Research implications and other future perspectives 

Research implications for prenatal surgery
Prenatal surgery is a hot topic in spina bifida and has become an optimistic 

treatment option since the first successful prenatal interventions were reported 

in the late 1990s [80,81]. Recently, a randomized trail (Management of Myelome-

ningocele Study – MOMS trail) showed improvement of motor outcome and 

reduction of hindbrain herniation and hydrocephalus shunting after prenatal 

surgery compared to postnatal surgery [82]. However, data about long-term 

outcome after prenatal surgery are limited and criticism about prenatal surgery 

is present as well [83,84]. The results presented in this thesis may contribute to 

the understanding of the outcome of prenatal surgery as well as to an objective 

evaluation of the outcome. 

 The neurophysiological studies may provide additional understanding 

regarding the improved motor outcome after prenatal surgery. Considering the 

UMN dysfunction and its relation with motor impairment demonstrated in our 

study, improved motor outcome is likely to result from an improved corticospinal 

tract development after prenatal surgery. In particular, the establishment of 

synaptic connections between the corticospinal and spinal motor neurons may be 

protected by interventions in utero. To gain further support for these assumptions, 

it would be interesting to assess UMN function neurophysiologically in the 

children included in the MOMS trail. Furthermore, magnetic stimulation may be 

a valuable instrument to objectively evaluate the outcome of prenatal surgery. 

 Another interesting issue in prenatal surgery is the reported reduction of 

hindbrain herniation, which is assessed by the degree of cerebellar herniation 

and the position of the fourth ventricle [82]. Our findings, however, showed that 

The study also had some limitations. First, the number of available MR images of 

children with spina bifida was relatively small as the participation of school-age 

children in the overall research program was lower than expected. We attempted 

to replenish the study material by retrieving appropriate MR images from the 

archives of the Department of Radiology, which might have made the set of MR 

images more heterogeneous. However, this heterogeneity resembles daily clinical 

practice. Second, we could not take into account a possible age effect on the 

morphometric analyses, even though brain dimensions change in a growing 

child. Salman et al. [77], however, showed that MR measurements of the posterior 

fossa do not correlate with age in children with Chiari II malformation. In our 

study, the strong differences between affected and unaffected children seem to 

outweigh the influence of age. Third, a recurrent issue in spina bifida research is 

the influence of hydrocephalus on brain morphology and function. Hydrocephalus 

was present in virtually all children with Chiari II malformation, and as such, it is 

difficult to disentangle abnormalities due to Chiari II malformation from abnormalities 

due to hydrocephalus. The mamillopontine distance in particular is affected by both 

Chiari II malformation and hydro cephalus, as an increased mamillopontine 

distance results from caudal displacement of the brainstem and pons [78], while 

hydrocephalus may decrease this distance [79]. In our study, all children with 

hydrocephalus were shunted and none of the children had a decreased mamillo-

pontine distance. Therefore, we assumed that the effect of increased intracranial 

pressure on the measurements was minimal in the population studied. In fetuses 

and newborn infants with unshunted hydro cephalus, however, increased intracranial 

pressure may influence the measurements and caution is called for when applying 

the results to neonatal and fetal MR images. 

Clinical implications 
The Chiari II malformation seems to be a clear entity with apparently recognizable 

characteristics, but clinicians should be aware of different interpretations of its 

MR features among observers. In the care of children with Chiari II malformation, 

decision-making processes regarding treatment should be based on clinical signs 

and symptoms in combination with reliable MR findings. Using reliable features 

and measures may facilitate plain communication about the malformation in 

such processes. Although Chiari II malformation is almost uniquely associated 

with open spinal dysraphism, there might be exceptions. In such cases, measuring 

the cerebellar width or mamillopontine distance may be helpful to diagnose 

Chiari II malformation. 

 Several advanced MR imaging methods, such as volumetric analyses, diffusion 

tensor imaging, and fiber tractography are upcoming in research settings [24], 

but conventional MR imaging is still the first choice imaging tool in clinical 
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and cognitive function may be interesting regarding a potential prognostic 

significance of the measures. Before the true prognostic significance of the 

measures can be established, however, their consistency needs to be tested on 

fetal and neonatal brain MR images first.

 An ultimate future perspective based on this thesis is an analysis in which 

the neurophysiological findings are combined with the MR imaging findings. 

Investigating associations between these findings may be helpful to explore the 

involvement of Chiari II malformation in UMN dysfunction. This involvement 

might be demonstrated by hypothetical associations between the MR measurements 

and the CMCT or transcranial MEP area. Furthermore, other advanced MR 

imaging techniques, such as diffusion tensor imaging and volumetric studies, 

offer new perspectives to assess motor function in spina bifida. Using these 

methods, the main white matter fiber bundles and abnormal patterns of gray 

matter can be visualized. Currently, research using these advanced techniques is 

focused on cognitive function in spina bifida [24], but these techniques may also 

be useful to investigate the integrity of central motor pathways in relation to 

clinical motor impairment. 

this scoring system might be imprecise, and moreover, the degree of herniation 

is only weakly related to the functional severity of the malformation [85]. The 

reliable measures presented in this thesis may be more helpful to objectively 

evaluate the effect of prenatal surgery on Chiari II malformation. The added 

value of these measures is that they appraise different parts of the malformation 

in three dimensions. 

Future perspectives 

The neurophysiological findings presented showed UMN dysfunction at a 

supraspinal level in spina bifida using conventional TMS. Currently, more 

advanced methods of TMS, such as paired-pulse TMS and silent period 

measurements, are available. These methods may provide information about 

cortical excitatory and inhibitory phenomena [16] and may be particularly useful 

to investigate the supraspinal localization of UMN dysfunction in more detail. 

 In addition, a method to investigate UMN function in newborn infants is 

desirable. Methods using muscle pre-activation to elicit transcranial MEPs in 

newborn infants are reported in the literature [86], but these methods are 

difficult to perform and may result in highly variable MEPs [87]. If muscle 

pre-activation can be standardized, for example by paired-pulse TMS, assessment 

of UMN function might become possible in newborn infants with spina bifida. 

 Prospective longitudinal neurophysiological measurements in subjects with 

spina bifida and control subjects from neonatal age to late childhood may 

provide additional information about the postnatal course of corticospinal and 

spinal motor function in spina bifida. Furthermore, knowledge about fetal 

development of the corticospinal and spinal motor neurons and in particular 

the establishment of spinal synaptic connections in spina bifida is still limited. 

Methods to study these developmental processes from morphological and 

functional points of view are ultimately desirable in order to provide further 

understanding of the complex pathology of spina bifida.

 The follow-up of the neonatal cohort described in this thesis was short. 

Future follow-up assessments of this cohort may reveal more information about 

the prognostic value of the neurophysiological tools for motor outcome at 

different ages during childhood. 

 Regarding the MR imaging study, the reliable measures may be of particular 

value regarding severity assessment of Chiari II malformation. The clinical 

severity may not only be reflected in the classical brainstem and cervical spinal 

cord symptoms, but also in cognitive function [88]. Therefore, an exploration of 

associations between morphometric measurements, clinical signs and symptoms, 

Chapter 9 General discussion

9



176 177

25.  Hasan KM, Eluvathingal TJ, Kramer LA, Ewing-Cobbs L, Dennis M, Fletcher JM. White matter micro-

structural abnormalities in children with spina bifida myelomeningocele and hydrocephalus: a 

diffusion tensor tractography study of the association pathways. J Magn Reson Imaging 2008; 

27:700-709.

26.  Ou X, Glasier CM, Snow JH. Diffusion tensor imaging evaluation of white matter in adolescents 

with myelomeningocele and Chiari II malformation. Pediatr Radiol 2011; 41:1407-1415.

27.  Barkovich AJ. Congenital malformations of the brain and skull. In: Barkovich AJ. ed. Pediatric 

Neuroimaging. 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2005: 374-384.

28.  Miller E, Widjaja E, Blaser S, Dennis M, Raybaud C. The old and the new: supratentorial MR findings 

in Chiari II malformation. Childs Nerv Syst 2008; 24:563-575.

29.  Juranek J, Fletcher JM, Hasan KM, et al. Neocortical reorganization in spina bifida. Neuroimage 2008; 

40:1516-1522.

30.  Hess CW, Mills KR, Murray NM. Responses in small hand muscles from magnetic stimulation of the 

human brain. J Physiol 1987; 388:397-419.

31.  Di Lazzaro V, Restuccia D, Oliviero A, et al. Effects of voluntary contraction on descending volleys 

evoked by transcranial stimulation in conscious humans. J Physiol 1998; 508:625-633.

32.  Ten Donkelaar HJ, Lammens M, Wesseling P, Hori A, Keyser A, Rotteveel J. Development and 

malformations of the human pyramidal tract. J Neurol 2004; 251:1429-1442.

33.  Eyre JA. Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav 

Rev 2007; 31:1136-1149.

34.  Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. 

Nat Rev Genet 2000; 1:20-29.

35.  Briscoe J, Ericson J. Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 

2001; 11:43-49.

36.  Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C. Functional corticospinal projections are 

established prenatally in the human foetus permitting involvement in the development of spinal 

motor centres. Brain 2000; 123:51-64.

37.  Sival DA, Verbeek RJ, Brouwer OF, Sollie KM, Bos AF, den Dunnen WF. Spinal hemorrhages are 

associated with early neonatal motor function loss in human spina bifida aperta. Early Hum Dev 

2008; 84:423-431.

38.  Hofmeijer J, van Putten MJ. Ischemic cerebral damage: an appraisal of synaptic failure. Stroke 2012; 

43:607-615.

39.  Van de Meent H, Hosman AJ, Hendriks J, Zwarts M, Schubert M. Severe degeneration of peripheral 

motor axons after spinal cord injury: a European multicenter study in 345 patients. Neurorehabil 

Neural Repair 2010; 24:657-665.

40.  Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD. Magnetic stimulation over the spinal 

enlargements. J Neurol Neurosurg Psychiatry 1989; 52:1025-1032.

41.  Chokroverty S, Flynn D, Picone MA, Chokroverty M, Belsh J. Magnetic coil stimulation of the human 

lumbosacral vertebral column: site of stimulation and clinical application. Electroencephalogr Clin 

Neurophysiol 1993; 89:54-60.

42.  Schmid UD, Walker G, Hess CW, Schmid J. Magnetic and electrical stimulation of cervical motor 

roots: technique, site and mechanisms of excitation. J Neurol Neurosurg Psychiatry 1990; 53:770-777.

43.  Magistris MR, Rosler KM, Truffert A, Landis T, Hess CW. A clinical study of motor evoked potentials 

using a triple stimulation technique. Brain 1999: 122:265-279.

44.  Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application 

guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin 

Neurophysiol 2009; 120:2008-2039.

45.  Gilbert DL, Garvey MA, Bansal AS, Lipps T, Zhang J, Wassermann EM. Should transcranial magnetic 

stimulation research in children be considered minimal risk? Clin Neurophysiol 2004; 115:1730-1739.

References

1.  Barry S. Quality of life and myelomeningocele: an ethical and evidence-based analysis of the 

Groningen Protocol. Pediatr Neurosurg 2010; 46:409-414.

2.  Bulas D. Fetal evaluation of spine dysraphism. Pediatr Radiol 2010; 40:1029-1037.

3.  Danzer E, Johnson MP, Adzick NS. Fetal surgery for myelomeningocele: progress and perspectives. 

Dev Med Child Neurol 2012; 54:8-14.

4.  Mortier W, von Bernuth H. The neural influence on muscle development in myelomeningocele: 

histochemical and electrodiagnostic studies. Dev Med Child Neurol 1971; 13(Suppl.25):82-89.

5.  Stark GD, Drummond M. The spinal cord lesion in myelomeningocele. Dev Med Child Neurol 1971; 

13(Suppl.25):1-14.

6.  Stark GD, Drummond M. Neonatal electromyography and nerve conduction studies in myelome-

ningocele. Neuropädiatrie 1972; 3:409-420.

7.  Emery JL, Lendon RG. Clinical implications of cord lesions in neurospinal dysraphism. Dev Med Child 

Neurol 1972; 14(Suppl.27):45-51.

8.  Hori A. A review of the morphology of spinal cord malformations and their relation to neuro-em-

bryology. Neurosurg Rev 1993; 16:259-266.

9.  Sival DA, van Weerden TW, Vles JS, et al. Neonatal loss of motor function in human spina bifida 

aperta. Pediatrics 2004; 114:427-434.

10.  Ralis Z, Ralis HM. Morphology of peripheral nerves in children with spina bifida. Dev Med Child 

Neurol 1972; 14(Suppl.27):109-116.

11.  Lendon RG. Neuron population in the lumbosacral cord of myelomeningocele children. Dev Med 

Child Neurol 1969; 11(Suppl.20):82-85.

12.  Muller K, Homberg V, Lenard HG. Magnetic stimulation of motor cortex and nerve roots in children. 

Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 1991; 81:63-70.

13.  Nezu A, Kimura S, Uehara S, Kobayashi T, Tanaka M, Saito K. Magnetic stimulation of motor cortex 

in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 1997; 

19:176-180.

14.  Garvey MA, Ziemann U, Bartko JJ, Denckla MB, Barker CA, Wassermann EM. Cortical correlates of 

neuromotor development in healthy children. Clin Neurophysiol 2003; 114:1662-1670.

15.  Sival DA, Brouwer OF, Bruggink JL, et al. Movement analysis in neonates with spina bifida aperta. 

Early Hum Dev 2006; 82:227-234.

16.  Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol 2003; 

2:145-156.

17.  Chen R, Cros D, Curra A, et al. The clinical diagnostic utility of transcranial magnetic stimulation: 

report of an IFCN committee. Clin Neurophysiol 2008; 119:504-532.

18.  Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BK. eds. Handbook of Transcranial 

Magnetic Stimulation. 1st ed. London: Arnold, 2002.

19.  Curra A, Modugno N, Inghilleri M, Manfredi M, Hallett M, Berardelli A. Transcranial magnetic 

stimulation techniques in clinical investigation. Neurology 2002; 59:1851-1859.

20.  Gilbert JN, Jones KL, Rorke LB, Chernoff GF, James HE. Central nervous system anomalies associated 

with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of 

theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery 1986; 

18:559-564.

21.  Curnes JT, Oakes WJ, Boyko OB. MR imaging of hindbrain deformity in Chiari II patients with and 

without symptoms of brainstem compression. AJNR Am J Neuroradiol 1989; 10:293-302.

22.  Rauzzino M, Oakes WJ. Chiari II malformation and syringomyelia. Neurosurg Clin N Am 1995; 

6:293-309.

23.  Stevenson KL. Chiari type II malformation: past, present, and future. Neurosurg Focus 2004; 16:E5.

24.  Juranek J, Salman MS. Anomalous development of brain structure and function in spina bifida 

myelomeningocele. Dev Disabil Res Rev 2010; 16:23-30.

Chapter 9 General discussion

9



178 179

71.  Sutton LN, Adzick NS, Bilaniuk LT, Johnson MP, Crombleholme TM, Flake AW. Improvement in 

hindbrain herniation demonstrated by serial fetal magnetic resonance imaging following fetal 

surgery for myelomeningocele. JAMA 1999; 282:1826-1831.

72.  Wolpert SM, Anderson M, Scott RM, Kwan ES, Runge VM. Chiari II malformation: MR imaging 

evaluation. AJR Am J Roentgenol 1987 149:1033-1042.

73.  Just M, Schwarz M, Ludwig B, Ermert J, Thelen M. Cerebral and spinal MR-findings in patients with 

postrepair myelomeningocele. Pediatr Radiol 1990; 20:262-266.

74.  Danzer E, Finkel RS, Rintoul NE, et al. Reversal of hindbrain herniation after maternal-fetal surgery 

for myelomeningocele subsequently impacts on brain stem function. Neuropediatrics 2008; 

39:359-362.

75.  Variend S, Emery JL. Cervical dislocation of the cerebellum in children with meningomyelocele. 

Teratology 1976; 13:281-289.

76.  McLone DG, Knepper PA. The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 1989; 

15:1-12.

77.  Salman MS, Blaser SE, Sharpe JA, Dennis M. Cerebellar vermis morphology in children with spina 

bifida and Chiari type II malformation. Childs Nerv Syst 2006; 22:385-393.

78.  El Gammal T, Mark EK, Brooks BS. MR imaging of Chiari II malformation. AJR Am J Roentgenol 1988; 

150:163-170.

79.  El Gammal T, Allen MB, Brooks BS, Mark EK. MR evaluation of hydrocephalus. AJR Am J Roentgenol 

1987; 149:807-813.

80.  Adzick NS, Sutton LN, Crombleholme TM, Flake AW. Successful fetal surgery for spina bifida. Lancet 

1998; 352:1675-1676.

81.  Tulipan N, Hernanz-Schulman M, Bruner JP. Reduced hindbrain herniation after intrauterine my-

elomeningocele repair: A report of four cases. Pediatr Neurosurg 1998; 29:274-278.

82.  Adzick NS, Thom EA, Spong CY, et al. A randomized trial of prenatal versus postnatal repair of 

myelomeningocele. N Engl J Med 2011; 364;993-1004.

83.  Shurtleff D. Fetal endoscopic myelomeningocele repair. Dev Med Child Neurol 2012; 54:4-5.

84.  Simpson JL, Greene MF. Fetal surgery for myelomeningocele? N Engl J Med 2011; 364:1076-1077.

85.  Narayan P, Mapstone TB, Tubbs RS, Grabb PA, Frye T. Clinical significance of cervicomedullary 

deformity in Chiari II malformation. Pediatr Neurosurg 2001; 35:140-144.

86.  Koh TH, Eyre JA. Maturation of corticospinal tracts assessed by electromagnetic stimulation of the 

motor cortex. Arch Dis Child 1988; 63:1347-1352.

87.  Hess CW, Mills KR, Murray NM. Magnetic stimulation of the human brain: facilitation of motor 

responses by voluntary contraction of ipsilateral and contralateral muscles with additional 

observations on an amputee. Neurosci Lett 1986; 71:235-240.

88.  Vinck A, Maassen B, Mullaart R, Rotteveel J. Arnold-Chiari-II malformation and cognitive 

functioning in spina bifida. J Neurol Neurosurg Psychiatry 2006; 77:1083-1086.

46.  Frye RE, Rotenberg A, Ousley M, Pascual-Leone A. Transcranial magnetic stimulation in child 

neurology: current and future directions. J Child Neurol 2008; 23:79-96.

47.  Carr LJ, Harrison LM, Evans AL, Stephens JA. Patterns of central motor reorganization in hemiplegic 

cerebral palsy. Brain 1993; 116:1223-1247.

48.  Eyre JA, Taylor JP, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of 

corticospinal projections during human development. Neurology 2001; 57:1543-1554.

49.  Staudt M, Grodd W, Gerloff C, Erb M, Stitz J, Krageloh-Mann I. Two types of ipsilateral reorganization 

in congenital hemiparesis: a TMS and fMRI study. Brain 2002; 125:2222-2237.

50.  Maegaki Y, Maeoka Y, Ishii S, et al. Mechanisms of central motor reorganization in pediatric 

hemiplegic patients. Neuropediatrics 1997; 28:168-174.

51.  Vandermeeren Y, Bastings E, Fadiga L, Olivier E. Long-latency motor evoked potentials in congenital 

hemiplegia. Clin Neurophysiol 2003; 114:1808-1818.

52.  Nezu A, Kimura S, Kobayashi T, et al. Transcranial magnetic stimulation in an adrenoleukodystro-

phy patient. Brain Dev 1996; 18:327-329.

53.  Dan B, Christiaens F, Christophe C, Dachy B. Transcranial magnetic stimulation and other evoked 

potentials in pediatric multiple sclerosis. Pediatr Neurol 2000; 22:136-138.

54.  Noguchi Y, Okubo O, Fuchigami T, Fujita Y, Harada K. Motor-evoked potentials in a child recovering 

from transverse myelitis. Pediatr Neurol 2000; 23:436-438.

55.  Verhoef M, Barf HA, Post MW, van Asbeck FW, Gooskens RH, Prevo AJ. Secondary impairments in 

young adults with spina bifida. Dev Med Child Neurol 2004; 46:420-427.

56.  Bartonek A, Saraste H. Factors influencing ambulation in myelomeningocele: a cross-sectional 

study. Dev Med Child Neurol 2001; 43:253-260.

57.  Danielsson AJ, Bartonek A, Levey E, McHale K, Sponseller P, Saraste H Associations between 

orthopaedic findings, ambulation and health-related quality of life in children with myelomenin-

gocele. J Child Orthop 2008; 2:45-54.

58.  Bartonek A. Motor development toward ambulation in preschool children with myelomeningocele-

-a prospective study. Pediatr Phys Ther 2010; 22:52-60.

59.  Hunt GM. Open spina bifida: outcome for a complete cohort treated unselectively and followed into 

adulthood. Dev Med Child Neurol 1990; 32:108-118.

60.  Oakeshott P, Hunt GM, Poulton A, Reid F. Open spina bifida: birth findings predict long-term 

outcome. Arch Dis Child 2012; 97:474-476.

61.  Samuelsson L, Skoog M. Ambulation in patients with myelomeningocele: a multivariate statistical 

analysis. J Pediatr Orthop 1988; 8:569-575.

62.  McLone DG. Continuing concepts in the management of spina bifida. Pediatr Neurosurg 1992; 

18:254-256.

63.  Oakeshott P, Hunt GM. Long-term outcome in open spina bifida. Br J Gen Pract 2003; 53:632-636.

64.  Hunt GM, Oakeshott P. Outcome in people with open spina bifida at age 35: prospective community 

based cohort study. BMJ 2003; 326:1365-1366.

65.  Peach B. Arnold-Chiari malformation: anatomic features of 20 cases. Arch Neurol 1965; 12:613-621.

66.  Emery JL, MacKenzie N. Medullo-cervical dislocation deformity (Chiari II deformity) related to 

neurospinal dysraphism (meningomyelocele). Brain 1973; 96:155-162.

67.  Naidich TP, Pudlowski RM, Naidich JB, Gornish M, Rodriguez FJ. Computed tomographic signs of 

the Chiari II malformation. Part I: Skull and dural partitions. Radiology 1980; 134:65-71.

68.  Naidich TP, Pudlowski RM, Naidich JB. Computed tomographic signs of Chiari II malformation. II: 

Midbrain and cerebellum. Radiology 1980; 134:391-398.

69.  Naidich TP, Pudlowski RM, Naidich JB. Computed tomographic signs of the Chiari II malformation. 

III: Ventricles and cisterns. Radiology 1980; 134:657-663.

70.  Naidich TP, McLone DG, Fulling KH. The Chiari II malformation: Part IV. The hindbrain deformity. 

Neuroradiology 1983; 25:179-197.

Chapter 9 General discussion

9



Summary       

Nederlandse samenvatting

Dankwoord

Curriculum Vitae

List of publications

10



183

Summary

Spina bifida is a complex and heterogeneous congenital malformation of the 

nervous system with abnormalities at several levels along the neural axis 

(multilevel pathology). The most pronounced abnormality is the spinal anomaly, 

which results from an incomplete closure of the embryonic neural tube. Based 

on the appearance of the spinal anomaly, spina bifida can be categorized into 

open spinal dysraphism and closed spinal dysraphism. Other abnormalities include 

Chiari II malformation, hydrocephalus, corpus callosum dysmorphology, and 

cortical malformations. Although the neurodevelopmental outcome of children 

with spina bifida has improved over the last decades and spina bifida is compatible 

with long-term survival, affected individuals may encounter considerable 

consequences which have repercussions on daily activities and community 

participation. In particular, these consequences involve neurological impairment 

in the lower limbs, bladder and bowel dysfunction, orthopedic problems, sequelae 

from hindbrain compression, and cognitive impairments. 

Chapter 1, the general introduction, provides background information regarding 

spina bifida and presents the motivation and aim of the thesis. The motivation is 

founded on the multilevel pathology and the heterogeneity of spina bifida. The 

improved overall outcome, the absence of up-to-date prognostic standards, and 

current discussions about prenatal and postnatal treatment also contribute to 

the motivation. Considering improvements in lower limb motor impairment 

and Chiari II malformation after prenatal surgery for spina bifida, the patho-

physiology of motor impairment in relation to the multilevel pathology as well 

as the heterogeneity of Chiari II malformation are of particular interest. Neuro-

physiological investigations may provide new insights into the pathophysiology 

of motor impairment in spina bifida, and the assessment of Chiari II malformation 

may be upgraded by a critical appraisal of the malformation on magnetic 

resonance (MR) images. These two instruments may provide objective outcome 

measures or predictive tools and as such, may contribute to decision-making 

processes regarding the treatment of spina bifida. Hence, the aim of the thesis is 

twofold. First, we aim to disentangle the proportional contribution of upper 

motor neuron (UMN) and lower motor neuron (LMN) dysfunction to motor 

impairment in the lower limbs using conventional nerve conduction studies and 

transcranial and spinal magnetic stimulation. In addition, the diagnostic and 

prognostic values of these tools are studied. Second, we aim to improve the MR 

assessment of Chiari II malformation by critically appraising its morphological 

features and performing morphometric analyses on MR images. 

Summary
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CMAPs is recommended as an additional instrument in the assessment of 

newborn infants with spina bifida. Chapter 4 describes the results of MEPs 

obtained in the quadriceps femoris, tibialis anterior, gastrocnemius, and biceps 

brachii muscles after trancranial and spinal magnetic stimulation in 36 newborn 

infants with spina bifida. In agreement with the results in Chapter 2, spinal 

magnetic stimulation resulted in MEPs in most muscles investigated, but 

transcranial magnetic stimulation hardly resulted in reproducible MEPs. 

Associations between the spinal MEPs and neurological impairment were also 

investigated. Similar to the results in Chapter 3, the area under the MEP curve 

(MEP area) was associated with the level of motor and sensory impairment and 

with the presence of muscle stretch reflexes, but not with the morphological 

level of the spinal anomaly. MEP latencies did not relate to the impairment levels. 

We suggested that the MEP area after lumbosacral magnetic stimulation may 

provide additional quantitative information about the neurological impairment. 

The assessment of gastrocnemius and quadriceps femoris MEPs is recommended 

as an additional tool in the neonatal assessment of spina bifida. 

 In continuation of Chapters 3 and 4, we investigated the prognostic value of 

the neonatal MEPs and CMAPs regarding the neurological outcome at two years 

of age. The results are described in Chapter 5. Of the 36 newborn infants initially 

studied, 29 children were available for the 2-years outcome evaluation that 

consisted of assessment of muscle function class (MFC) according to McDonald 

and ambulatory status according to Hoffer. Of the 29 children, 7 were classified 

as mildly impaired (MFC 1 or 2) and 22 as severely impaired (MFC 3, 4, or 5). Nine 

children were community ambulators and 20 children were non-community 

ambulators. The neonatal CMAP and lumbosacral MEP areas were larger in the 

mildly impaired subgroup compared to the severely impaired group and in 

community ambulators compared to non-community ambulators. However, the 

neonatally determined motor and sensory impairment levels showed stronger 

segregations regarding the 2-years outcome scores than the neonatal CMAP and 

lumbosacral MEP areas did. We concluded that neonatal CMAPs and lumbosacral 

MEPs may have some additional prognostic value, which may be helpful in 

newborn infants with complex spina bifida and in research settings where 

quantitative information about the neurological impairment might be needed. 

 In addition to the studies in the neonatal cohort, we performed neuro-

physiological studies in a cohort of 42 school-age children with spina bifida and 

a control group of 36 school-age children without spina bifida, aiming to 

disentangle the proportional contribution of UMN and LMN dysfunction to 

lower limb motor impairment in children with spina bifida. The results from 

this study are presented in Chapter 6. Motor impairment in the children with 

spina bifida was graded into known severity scales: muscle strengths in the 

This thesis is the third PhD thesis achieved within the Nijmegen Inter disciplinary 

Spina Bifida program. In this program, several different disciplines participate: 

pediatric neurology, neuropsychology, clinical neurophysiology, neuroradiology, 

obstetrics, epidemiology, family psychology, and empirical theology. The main 

purpose of the program is to determine the neurological, neuropsychological, 

and family-related outcomes of children with spina bifida aiming to improve 

prognostication and to support decision-making processes regarding prenatal 

and postnatal treatment. 

Part one contains the neurophysiological studies. Chapter 2 describes a pilot 

study in which the applicability of transcranial and lumbosacral magnetic 

stimulation was investigated in 13 newborn infants with spina bifida. 

Transcranial magnetic stimulation did not lead to any response at all. This was 

not completely surprising, as it is known from the literature that transcranial 

motor evoked potentials (MEPs) are difficult to obtain in healthy newborn infants 

as well. Consequently, we were unable to investigate UMN function in neonatal 

spina bifida by means of MEPs. In contrast, lumbosacral magnetic stimulation 

resulted in reproducible MEPs in the lower limb muscles, even in paralytic 

muscles, in most infants. As such, lumbosacral magnetic stimulation turned out 

to be applicable to investigate LMN function in neonatal spina bifida. In addition, 

nerve conduction studies were performed, which resulted in compound muscle 

action potentials (CMAPs) that were compatible with the obtained MEPs. The 

findings in this pilot study imply that excitable neural tissue is present at or 

caudally from the spinal anomaly and we concluded that the integrity of LMNs 

is at least partly preserved after birth. 

 In Chapters 3 and 4, associations between neurophysiological measurements 

and clinical neurological impairment assessments in newborn infants with 

spina bifida were investigated in the light of the potential prognostic value of the 

neurophysiological tools used. Chapter 3 addresses associations between CMAPs 

in the tibialis anterior and gastrocnemius muscles and neurological impairment 

in 31 newborn infants with spina bifida. The area under the CMAP curve (CMAP 

area) was associated with the level of motor and sensory impairment and with 

the presence of muscle stretch reflexes, but not with the morphological level of 

the spinal anomaly. A lower neurosegmental impairment level was associated 

with a larger CMAP area. These associations were stronger for the gastrocnemius 

muscle than for the tibialis anterior muscle. No associations were found between 

CMAP latency and neurological impairment or morphological level of the spinal 

anomaly. We concluded that the CMAP area provides an estimate of residual 

LMN function in affected spinal segments and suggested that the residual 

function represents a cranio-caudal decrease. The assessment of gastrocnemius 

Chapter 10 Summary

10



186 187

Mamillopontine distance and Cerebellar width showed high sensitivity (0.84 and 0.89, 

respectively) and specificity (0.97 and 0.92, respectively) regarding the diagnosis 

of Chiari II malformation. We concluded that morphometric measures reliably 

quantify the morphological distortions associated with Chiari II malformation 

and that they have potential to assess the severity of the malformation in clinical 

and research settings. The measures Mamillopontine distance and Cerebellar width 

may be particularly helpful in cases in which the diagnosis Chiari II malformation 

is ambiguous.

In Chapter 9, the general discussion, the main findings are discussed with regard  

to the research questions. The neurophysiological findings are put into perspective 

of the multilevel pathology of spina bifida by relating the findings to UMN and 

LMN dysfunction. We discuss the proportional involvement of UMN and LMN 

dysfunction in motor impairment with particular contemplation of a disturbed 

establishment of the synaptic connectivity between the corticospinal and spinal 

motor neurons during embryonic development. In addition, the diagnostic and 

prognostic values of the neurophysiological tools used are discussed. Regarding 

the brain MR imaging studies, the findings are put into perspective of the 

assessment and diagnosis of Chiari II malformation. Finally, methodological 

considerations and future perspectives are presented, especially concerning the 

role of neurophysiological and brain MR imaging studies in the outcome 

evaluation of prenatal surgery for spina bifida.

quadriceps femoris, tibialis anterior, and gastrocnemius muscles; muscle 

function classes according to McDonald; and ambulatory status according to 

Hoffer. In all children, we performed transcranial and spinal magnetic 

stimulation with MEP recordings from the quadriceps femoris, tibialis anterior, 

gastrocnemius, and biceps brachii muscles. CMAPs following percutaneous 

electrical nerve stimulation were recorded from the tibialis anterior and 

gastrocnemius muscles as well. Regarding LMN function, severely impaired 

children with spina bifida had smaller CMAP and lumbosacral MEP areas than 

control children, whereas mildly impaired children only slightly differed from 

control children. CMAP and lumbosacral MEP latencies did not differ between 

children with spina bifida and control children. Regarding UMN function, 

mildly and severely impaired children with spina bifida clearly had smaller 

transcranial MEP areas and longer central motor conduction times (CMCTs) than 

control children. The smallest MEP areas and the longest CMCTs were seen in 

severely impaired children. These findings suggest that UMN dysfunction 

substantially contributes to motor impairment in spina bifida. As the results 

were similar for the upper and lower limbs, we concluded that at least part of the 

UMN dysfunction has its origin at a supraspinal level.

Part two contains the brain MR imaging studies. Brain MR images of 26 children 

with open spinal dysraphism, 17 children with closed spinal dysraphism, and 36 

children without spinal dysraphism or cerebral malformations were blindly and 

independently reviewed for morphological features and morphometric measures 

of Chiari II malformation by three observers. In the study described in Chapter 7,  

we investigated the interobserver reliability of all well-known features of Chiari II 

malformation. Of the 33 features studied, 23 features turned out to be unreliable. 

The reliable features were predominantly features assessed in the sagittal plane. 

Herniation of the cerebellum could reliably be assessed, but distinguishing 

between herniation of the vermis and tonsils appeared to be senseless. We 

provided a set of essential features of Chiari II malformation that may facilitate 

plain communication about the MR assessment of Chiari II malformation and 

provide a solid basis for consensus on the diagnosis in clinical and research 

settings. In the study described in Chapter 8, we investigated interobserver 

reliability and diagnostic performance of morphometric measures of Chiari II 

malformation. Of the 21 measures studied, 15 measures turned out to be reliable. 

The unreliability of measuring the degree of cerebellar herniation was a 

remarkable result. In the diagnostic performance analyses, the Chiari II 

malformation was defined by cerebellar herniation and presence of open spinal 

dysraphism (n = 23). Most measurements differed statistically significantly 

between children with and without Chiari II malformation. The measures 
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Nederlandse samenvatting

Spina bifida, ook wel ‘open ruggetje’ genoemd, is een van de meest voorkomende 

aangeboren afwijkingen van het zenuwstelsel, waarbij complexe en heterogene 

afwijkingen op meerdere niveaus in het zenuwstelsel tot uiting komen. Deze 

afwijkingen betreffen een embryonaal sluitingsdefect van de rug, afwijkingen 

in het ruggenmerg boven het niveau van dit sluitingsdefect, de cervicomedul-

laire overgang met een zogenaamde Chiari II malformatie, hydrocefalus, corpus 

callosum afwijkingen en corticale malformaties. In dit proefschrift worden deze 

afwijkingen op meerdere niveaus aangeduid met ‘multilevel pathologie’ (zie 

Figuur 1 in hoofdstuk 1). 

 Spina bifida ontstaat als gevolg van een gestoorde sluiting van de embryonale 

neurale buis in de 3e en 4e week na conceptie. De oorzaak hiervan is multifacto-

rieel, waarbij zowel genetische als omgevingsfactoren een rol spelen. Globaal 

kan een onderscheid gemaakt worden tussen open spina bifida en gesloten spina 

bifida op basis van het al dan niet bedekt zijn van de rugafwijking met normale 

huid. De toekomstperspectieven en de levensverwachting van kinderen met 

spina bifida zijn in de afgelopen decennia verbeterd, maar de gevolgen die hun 

weerslag hebben op het dagelijks functioneren en de deelname aan de maatschappij 

blijven aanzienlijk. Deze gevolgen zijn neurologische functiestoornissen in de 

benen en soms ook in de armen, neurologisch gestoorde blaas- en darmfuncties, 

orthopedische problemen, stoornissen gerelateerd aan de Chiari II malformatie 

en stoornissen in het cognitief functioneren. Daarnaast wordt de kwaliteit van 

leven bepaald door de omgeving waarin een kind met spina bifida opgroeit.

In de algemene introductie in hoofdstuk 1 wordt de achtergrondinformatie over 

spina bifida beschreven en worden de motivatie en de doelstellingen van het 

onderzoek gepresenteerd. De motivatie komt voort uit de complexe multilevel 

pathologie en de heterogeniteit van de afwijkingen in combinatie met een 

verbeterde toekomst verwachting, de afwezigheid van individuele prognostische 

indicatoren en actuele discussies over prenatale en postnatale behandeling van 

spina bifida. Sinds de jaren 70 wordt er nationaal en internationaal een discussie 

gevoerd over onthouding van actieve behandeling, ook wel selectieve behandeling 

genoemd, bij pasgeborenen met zeer ernstige vormen van spina bifida. Daar 

tegenover staat de opkomst van de prenatale chirurgie als behandelmogelijk-

heid voor ongeboren kinderen met spina bifida. Prenatale chirurgie lijkt een gunstig 

effect te hebben op de neurologische functiestoornissen in de benen. In het kader 

van de multilevel pathologie worden deze functiestoornissen bepaald door het 

disfunctioneren van zowel het centrale motorisch neuron (upper motor neuron)  

als het perifere motorisch neuron (lower motor neuron). Dit wordt geïllustreerd in 
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van de multimodale gevolgen van spina bifida zowel voor het kind met spina 

bifida als voor zijn omgeving. Deze doelstelling werd belicht vanuit kinderneuro-

logisch, kinderneuropsychologisch, gezinspedagogische en levensbeschouwelijk 

perspectief in een poging de prognosestelling te verbeteren en een onder bouwing  

te vinden voor beslissingen over prenatale en postnatale behandeling. In het 

kader van dit programma zijn reeds twee proefschriften verschenen. In het 

proefschrift van Ignace Vermaes (Parents’ psychosocial adjustment in families of children 

with spina bifida), dat in 2007 verscheen, werd het psychosociaal functioneren van 

ouders van kinderen met spina bifida beschreven. In 2011 verscheen het 

proefschrift van Anja Vinck (Neurocognitive functioning of children with spina bifida), 

waarin het cognitief functioneren en de onderliggende cognitieve en motorische 

processen bij kinderen met spina bifida werden beschreven. Prenatale beeld- 

vorming en neurofysiologische bevindingen in relatie tot de prognose van spina 

bifida zullen naar verwachting in 2013 beschreven worden in het proefschrift 

van Inge Cuppen. 

Deel één van het proefschrift bevat de resultaten van de neurofysiologische 

onderzoeken. In hoofdstuk 2 wordt een pilotstudie beschreven, waarin de 

mogelijkheden en beperkingen van transcraniële en spinale magneetstimulatie 

bij pasgeborenen met spina bifida (n = 13) werden onderzocht. Na transcraniële 

magneetstimulatie konden geen betrouwbare MEPs aan de benen worden afgeleid. 

Uit de literatuur is bekend dat het lastig is om MEPs op te wekken na transcraniële 

magneetstimulatie, ook bij gezonde pasgeborenen. Derhalve waren de uitkomsten 

niet verrassend en bleek deze methode niet geschikt om de functie van het 

centrale motorisch neuron te onderzoeken bij pasgeborenen met spina bifida. 

Lumbosacrale magneetstimulatie daarentegen leverde wel betrouwbare MEPs 

aan de benen op. Opvallend was dat deze MEPs ook opwekbaar waren in volledig 

paralytische spieren. Lumbosacrale magneetstimulatie bleek hiermee een geschikte 

methode om het perifere motorisch neuron bij pasgeborenen met spina bifida te 

onderzoeken. Conventioneel zenuwgeleidingsonderzoek resulteerde in CMAPs 

in beenspieren die in overeenstemming waren met de gevonden MEPs in dezelfde 

spieren. De resultaten in deze pilotstudie laten zien dat lumbosacrale magneet-

stimulatie uitvoerbaar is bij pasgeborenen met spina bifida en dat exciteerbaar 

neurologische weefsel aanwezig is in of onder de rugafwijking. Dit laatste toont 

aan dat het perifere motorisch neuron ten minste gedeeltelijk intact is bij pas- 

geborenen met spina bifida. 

 In de hoofdstukken 3 en 4 worden verbanden beschreven tussen neurofysio-

logische resultaten en uitkomsten van het klinisch neurologisch onderzoek 

(betreffende het motorische en het sensibele uitvalsniveau en de opwekbaarheid 

van peesreflexen) bij pasgeborenen met spina bifida. Deze verbanden werden 

Figuur 1 in hoofdstuk 1. Weinig is bekend over de verhouding waarin het centrale 

en het perifere motorisch neuron bijdragen aan de motorische functiestoornis-

sen in de benen. Bovendien is nog onbekend wat de effecten van prenatale 

chirurgie zijn op het centrale en het perifere motorisch neuron in verhouding 

tot het positieve effect op de motorische functiestoornissen. Hedendaagse neuro-

fysiologische technieken, waarbij gebruik gemaakt wordt van transcraniële en 

spinale magneetstimulatie, kunnen meer inzicht geven in deze complexe patho-

fysiologie. 

 Prenatale chirurgie lijkt ook een positief effect te hebben op de Chiari II 

malformatie. De beoordeling van de Chiari II malformatie op MRI afbeeldingen 

wordt echter gecompliceerd door de morfologische heterogeniteit en een overmaat 

aan radiologische kenmerken. Die kenmerken zijn voor verschillende inter-

pretaties vatbaar en de betrouwbaarheid ervan ten aanzien van een eenduidige 

beoordeling door verschillende beoordelaars is nooit onderzocht. Deze problemen 

kunnen de beoordeling van de Chiari II malformatie op MRI afbeeldingen beperken 

zowel in de dagelijkse klinische praktijk als in wetenschappelijk onder zoek met 

betrekking tot de uitkomsten van prenatale chirurgie. De diagnostische waarde 

van MRI in dergelijke situaties kan verbeterd worden door een kritische 

beoordeling van de betrouwbaarheid en de diagnostische waarde van anatomische 

kenmerken en afmetingen van de malformatie op MRI afbeeldingen.

 Uit de bovenstaande motivatie volgt de tweevoudige doelstelling van dit 

proefschrift. De eerste doelstelling was het uiteenrafelen van de proportionele 

bijdrage van het centrale en het perifere motorisch neuron aan de motorische 

functiestoornissen in de benen met behulp van conventioneel zenuwgeleidings-

onderzoek en innovatief magneetstimulatieonderzoek. Bij zenuwgeleidingson-

derzoek worden zenuwen elektrisch gestimuleerd, waarna responsen, zogenaamde 

compound muscle action potentials (CMAPs), afgeleid worden van de spieren en bij 

magneetstimulatieonderzoek worden de hersenen of zenuwwortels met een 

uitwendig magnetisch veld gestimuleerd, waarna responsen, zogenaamde motor 

evoked potentials (MEPs), afgeleid worden van de spieren (zie Figuur 2 in hoofdstuk 1). In 

deze eerste doelstelling werden ook de diagnostische en de prognostische waarde 

van deze instrumenten meegenomen. De tweede doelstelling was het verbeteren 

van de diagnostische waarde van conventionele MRI door een analyse van de in-

terbeoordelaarsbetrouwbaarheid en de diagnostische waarde van de anatomische 

kenmerken en afmetingen van de Chiari II malformatie op MRI afbeeldingen.

 De onderzoeken beschreven in dit proefschrift zijn een onderdeel van het 

Nijmegen Interdisciplinair Spina Bifida Programma. In dit programma participeerden 

diverse disciplines: kinderneurologie, kinderneuropsychologie, klinische neuro-

fysiologie, neuroradiologie, obstetrie, epidemiologie, gezinspedagogiek en empirische 

theologie. De hoofddoelstelling van het programma was het in kaart brengen 
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bepaald. Van de 29 kinderen waren er zeven mild aangedaan (MFC 1 of 2) en 22 

ernstig aangedaan (MFC 3, 4 of 5). Negen kinderen waren community ambulant en 

20 niet. De oppervlakten onder de neonatale CMAPs en lumbosacrale MEPs 

bleken groter in de mild aangedane kinderen dan in de ernstig aangedane 

kinderen. De neonatale motorische en sensibele uitvalsniveaus bleken echter 

ook duidelijk lager te liggen in de mild aangedane kinderen dan in de ernstig 

aangedane kinderen, waarbij deze verschillen evidenter leken dan de verschillen 

voor de neurofysiologische parameters. Op basis hiervan werd geconcludeerd 

dat neonatale CMAPs en MEPs een beperkte toegevoegd prognostische waarde 

hebben ten opzichte van het klinische neurologisch onderzoek, welke echter van 

belang kan zijn bij kinderen met complexe vormen van spina bifida. Daarnaast 

kunnen CMAPs en MEPs van toegevoegde waarde zijn in wetenschappelijk onder - 

zoek, waarbij kwantitatieve informatie over motorische functies gewenst is. 

 Naast pasgeborenen met spina bifida werden ook kinderen in de leeftijd van 

6-14 jaar in het onderzoek betrokken. Zenuwgeleidingsonderzoek en magneetsti-

mulatieonderzoek werden verricht in een groep van 42 kinderen met spina 

bifida en in een groep van 36 gezonde controle kinderen. Het doel van deze 

onderzoeken was het uiteenrafelen van de proportionele bijdrage van het 

centrale en het perifere motorisch neuron aan de motorische functiestoornissen 

in de benen bij spina bifida. De resultaten hiervan staan beschreven in hoofdstuk 

6. De motorische functiestoornis werd beoordeeld op drie manieren: spierkracht 

in de spieren quadriceps femoris, tibialis anterior en gastrocnemius, Muscle 

Function Class volgens McDonald en loopfunctie volgens Hoffer. Op basis van deze 

evaluatie werden de kinderen met spina bifida geclassificeerd als mild of ernstig 

aangedaan. Transcraniële en spinale magneetstimulatie werden verricht bij alle 

kinderen, waarbij MEPs werden afgeleid aan de quadriceps femoris, tibialis 

anterior en gastrocnemius en ook aan de biceps brachii. Bovendien werd 

elektrische zenuwstimulatie verricht in de knieholte, waarna CMAPs werden 

afgeleid aan de tibialis anterior en gastrocnemius. Met betrekking tot de functie 

van het perifere motorisch neuron zagen we dat ernstig aangedane kinderen 

met spina bifida duidelijk kleinere CMAP en MEP oppervlakten hadden dan 

controle kinderen, terwijl dit verschil voor de mild aangedane kinderen gering 

was. CMAP en lumbosacrale MEP latenties verschilden niet tussen kinderen met 

spina bifida en controle kinderen. Met betrekking tot de functie van het centrale 

motorisch neuron zagen we dat zowel de mild als de ernstig aangedane kinderen 

duidelijk kleinere transcraniële MEPs en langere centrale motorische conductie 

tijden (CMCT) hadden dan de controle kinderen. Binnen de groep kinderen met 

spina bifida hadden de ernstig aangedane kinderen kleinere transcraniële MEPs 

en langere CMCTs dan de mild aangedane kinderen. Deze bevindingen suggereren 

dat het centrale motorisch neuron een belangrijke rol speelt in de motorische 

onderzocht met het oog op een potentiële prognostische waarde van de neurofy-

siologische instrumenten. In hoofdstuk 3 worden deze verbanden beschreven 

voor CMAPs afgeleid aan de spieren tibialis anterior en gastrocnemius bij 31 

pasgeborenen met spina bifida. Hierbij bleek dat de oppervlakte onder de CMAP 

curve (een maat voor de grootte van de CMAP) was geassocieerd met de klinische 

uitkomsten: een lager uitvalsniveau ging gepaard met een grotere CMAP 

oppervlakte, waarbij deze associatie sterker bleek voor de gastrocnemius dan 

voor de tibialis anterior. Er werden geen associaties gevonden tussen de CMAP 

latentie en de klinische uitkomsten, noch tussen het anatomische niveau van de 

rugafwijking en de neurofysiologische parameters. Wij concludeerden dat de 

CMAP oppervlakte kan gelden als een maat voor de restfunctie van het perifere 

motorisch neuron in aangedane spinale segmenten bij spina bifida, waarbij deze 

restfunctie een craniocaudale afname lijkt te representeren. Het bepalen van 

CMAPs in de gastrocnemius kan hiermee van toegevoegde waarde zijn bij 

pasgeboren met spina bifida. Hoofdstuk 4 beschrijft MEPs in de spieren 

quadriceps femoris, tibialis anterior, gastrocnemius en biceps brachii na 

transcraniële en spinale magneetstimulatie bij 36 pasgeborenen met spina 

bifida. In overeenstemming met de bevindingen in hoofdstuk 2, resulteerde 

spinale magneetstimulatie in betrouwbare MEPs in nagenoeg alle onderzochte 

spieren, terwijl transcraniële magneetstimulatie nauwelijks in meetbare MEPs 

resulteerde. De onderzochte verbanden tussen MEP parameters en uitkomsten 

van het klinisch neurologisch onderzoek stemden overeen met de resultaten in 

hoofdstuk 3. De oppervlakte onder de MEP curve was geassocieerd met het 

motorische en het sensibele uitvalsniveau en met de opwekbaarheid van pees -

reflexen, maar niet met het anatomische niveau van de rugafwijking. Ook werd 

er geen verband gevonden tussen de MEP latentie en de klinische uitkomsten. 

We opperden dat de oppervlakte onder de MEP na lumbosacrale magneetstimu-

latie een bijdrage kan leveren aan het kwantificeren van neurologische functie-

stoornissen in de benen. Het bepalen van MEPs in de quadriceps femoris en 

gastrocnemius kan hiermee van toegevoegde waarde zijn in de preoperatieve 

evaluatie van pasgeborenen met spina bifida.

 In aansluiting op de hoofdstukken 3 en 4, worden in hoofdstuk 5 de 

prognostische waarden van de neonatale CMAPs en MEPs voor neurologische en 

functionele uitkomsten op de leeftijd van 2 jaar beschreven. Deze prognostische 

waarden worden hierbij vergeleken met de prognostische waarde van het 

klinisch neurologisch onderzoek. Van de oorspronkelijke 36 pasgeborenen 

waren er 29 beschikbaar voor evaluatie op de leeftijd van 2 jaar. Hierbij werden 

de Muscle Function Class (MFC), een classificatie met een schaal van 1 (mild ) tot 5 

(ernstig) voor motorische functiestoornissen in de benen volgens McDonald, en 

de loopfunctie (community ambulant versus non-community ambulant) volgens Hoffer 
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de complexe kenmerken van de Chiari II malformatie te kwantificeren. Deze 

maten hebben potentie om de ernst van de malformatie te kwantificeren in de 

klinische praktijk en in wetenschappelijk onderzoek. De mamillopontiene 

afstand en de breedte van het cerebellum kunnen behulpzaam zijn in gevallen 

waarbij de diagnose Chiari II malformatie twijfelachtig is.

In de algemene discussie beschreven in hoofdstuk 9 worden de bevindingen in 

dit proefschrift bediscussieerd in relatie tot de vraagstellingen van het onder - 

zoek. De neurofysiologische resultaten worden hierbij geplaatst in het perspectief 

van de afwijkingen op meerdere niveaus in het zenuwstelsel (multilevel 

pathologie) bij kinderen met spina bifida, waarbij de resultaten worden vertaald 

naar disfunctioneren van het centrale en het perifere motorisch neuron. De 

proportionele betrokkenheid van het centrale en het perifere motorisch neuron bij  

de motorische functiestoornissen in de benen wordt verder uitgediept, waarbij 

gespeculeerd wordt over een gestoorde totstandkoming van synaptische 

verbindingen tussen het centrale en het perifere motorisch neuron. Bovendien 

worden de diagnostische en de prognostische waarden van de neurofysiologische 

instrumenten bediscussieerd. Met betrekking tot de radiologische onderzoeken 

worden de resultaten geplaatst in het perspectief van de beoordeling en de 

diagnose van Chiari II malformatie. Methodologische overwegingen worden 

eveneens belicht. De algemene discussie wordt afgesloten met implicaties voor 

prenatale chirurgie bij spina bifida en suggesties voor verder onderzoek.

functiestoornissen van de benen bij kinderen met spina bifida. Aangezien deze 

resultaten golden voor zowel de been- als de armspieren, werd aangenomen dat 

een belangrijk deel van de disfunctie van het centrale motorisch neuron gelegen 

is boven het niveau van het ruggenmerg. Dit kan geassocieerd zijn met de Chiari 

II malformatie of met supratentoriële grijze en witte stof afwijkingen.

In deel twee van dit proefschrift worden de onderzoeken naar de interbeoordelaars-

betrouwbaarheid en de diagnostische waarde van de anatomische kenmerken en 

afmetingen van de Chiari II malformatie op MRI afbeeldingen beschreven. 

Cerebrale MRI scans van 26 kinderen met open spina bifida, 17 kinderen met 

gesloten spina bifida en 26 kinderen zonder spina bifida of cerebrale afwijkingen 

werden geblindeerd en onafhankelijk beoordeeld door drie beoordelaars. Hierbij 

werden anatomische kenmerken gescoord en anatomische afmetingen bepaald 

aangaande de Chiari II malformatie. De resultaten van het onderzoek naar  

de interbeoordelaarsbetrouwbaarheid van de anatomische kenmerken worden 

beschreven in hoofdstuk 7. Alle in de literatuur bekende anatomische kenmerken, 

33 in het totaal, werden onderzocht. Hierbij bleek dat slechts 10 kenmerken 

betrouwbaar gescoord konden worden. Dit waren vooral kenmerken op saggitale 

MRI scans. Het beoordelen of er sprake is van herniatie van het cerebellum bleek 

betrouwbaar, maar het bleek niet mogelijk om een betrouwbaar onderscheid te 

maken tussen herniatie van de vermis en herniatie van de tonsillen. Op basis van 

dit onderzoek werd een set van betrouwbare Chiari II malformatie kenmerken 

vastgesteld, die de basis kan vormen voor consensus over de radiologische diagnose 

Chiari II malformatie. Bovendien leidt het gebruik van deze betrouwbare 

kenmerken tot heldere communicatie over de Chiari II malformatie zowel in de 

klinische praktijk als in wetenschappelijk onderzoek. In hoofdstuk 8 staan de 

resultaten aangaande de anatomische afmetingen bij Chiari II malformatie 

beschreven. Ten eerste werd de interbeoordelaarsbetrouwbaarheid van metingen 

aan de hersenstam, het cerebellum en de achterste schedelgroeve onderzocht. 

Van de 21 onderzochte maten bleken 15 maten betrouwbaar. Hierbij was 

opvallend dat het meten van het niveau van herniatie van het cerebellum niet 

betrouwbaar was. Vervolgens werd de diagnostische waarde van de betrouwbare 

maten bepaald, waarbij de diagnose Chiari II malformatie gedefinieerd werd als 

herniatie van het cerebellum door het foramen magnum in combinatie met de 

aanwezigheid van open spina bifida. Dit gold voor 23 kinderen. De meeste 

metingen bleken statistisch significant te verschillen tussen de kinderen met en 

de kinderen zonder Chiari II malformatie. De mamillopontiene afstand en de 

breedte van het cerebellum hadden een hoge sensitiviteit (0.84 en 0.89) en 

specificiteit (0.97 en 0.92) voor de diagnose Chiari II malformatie. We concludeerden 

dat diverse anatomische afmetingen betrouwbaar gebruikt kunnen worden om 
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Dankwoord

Bijna 11 jaar geleden begon ik aan mijn promotieonderzoek bij het onderzoeks-

programma dat later de naam Nijmegen Interdisciplinair Spina Bifida Programma 

kreeg. Met het bijbehorende ‘boekje’ in handen, sluit ik nu een belangrijke 

periode in mijn leven af. Het was een vormende periode, waarin promoveren veel 

meer was dan het schrijven van een proefschrift. Het heeft me veel geleerd over 

mijzelf en over mijn omgeving. Ik heb onder andere geleerd op mezelf te 

vertrouwen en mijn eigen pad te kiezen en te volgen. Tevreden en met genoegen 

kijk ik nu terug op deze enerverende periode, waarin veel mensen een belangrijke 

bijdrage hebben geleverd aan de goede afloop van het project. Dankbaar ben ik 

deze mensen voor hun enthousiasme, de praktische hulp, de wijze raad, de kritische 

commentaren en hun support in welke vorm dan ook. In het zonovergoten 

Andalusië, mijn hoofd zo goed als leeg, vertrouw ik nu mijn persoonlijke woorden 

van dank toe aan het geduldige papier, waarbij ik zal proberen niemand te vergeten.

Allereerst gaat mijn dank uit naar alle kinderen, jong en oud, en hun ouders 

voor hun geduld en hun bereidheid om deel te nemen aan het Nijmegen Inter-

disciplinair Spina Bifida Programma. Met genoegen denk ik nog wel eens terug 

aan de dagprogramma’s die de kinderen doorliepen op de afdeling BOB. Zonder 

hun inzet was dit proefschrift niet tot stand gekomen.

In het bijzonder gaan mijn dank en waardering uit naar mijn promotor en 

copromotoren. Hartelijk dank voor jullie betrokkenheid, het vertrouwen en de 

geboden mogelijkheden. De weg was lang en in het begin zeer breed, er waren 

hobbels en obstakels, maar gaande weg versmalde en versnelde het pad, dat leidde 

naar dit proefschrift. 

Beste prof. dr. Rotteveel, beste Jan. Onze eerste ontmoeting in de barakken van 

het B-gebouw staat me nog helder voor de geest. Tijdens een eerste gesprek over 

een wetenschappelijke stage bij de afdeling kinderneurologie kwam jij met een 

dik dossier tevoorschijn met het voorstel een case report te schrijven. Hiermee heb 

je mijn interesse voor zowel de wetenschap als de kinderneurologie verder weten 

aan te wakkeren en werd er de basis gelegd voor een vervolgsamenwerking in het 

spina bifida project. Jouw enthousiasme voor de neurofysiologie werkte zo 

aanstekelijk, dat het MEP-project een wezenlijk onderdeel is geworden van mijn 

proefschrift. Ondanks de vertragingen, bleef je enthousiast over mijn bevindingen 

en wist je mij telkens weer op Rotteveliaanse wijze te stimuleren.

Beste dr. Mullaart, beste Reinier, dank voor je intensieve, maar ook eigenzinnige 

begeleiding in de afgelopen jaren. Samen met Jan was je een belangrijke initiator 

van het spina bifida project, waarbij je veel voorwerk hebt verricht onder andere 
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Beste drs. van der Vliet, beste Ton, de twee hoofdstukken over de Chiari II 

malformatie vormen een belangrijk onderdeel van mijn proefschrift. Dank voor 

het vertrouwen dat je had in de ideeën van Reinier en mij en voor de tijd die je 

gestoken hebt in het beoordelen van de MRIs. Ook vanuit het hoge noorden bleef 

je betrokken bij het Nijmeegse spina bifida project. Hartelijk dank voor je bijdrage 

aan deze klus en voor de prettige samenwerking. Beste drs. Ton Feuth, beste prof. 

dr. George Borm, toen op een gegeven moment de statistiek te ingewikkeld werd, 

hebben Nel en ik jullie hulp ingeroepen. Dank voor jullie bijdrage en de uitleg 

aangaande kappa analyses en ingewikkelde mixed model analyses.  Prof. dr. Maassen, 

beste Ben, het neuropsychologische deelproject was sterk verweven met het kinder-

neurologische deelproject van het spina bifida programma. Dank voor je 

kritische input tijdens de overlegmomenten en de plezierige samenwerking.

Ook gaat mijn dank uit naar de leden van de manuscriptcommissie, prof. dr. Sander 

Geurts, prof. dr. Dick Stegeman, en prof. dr. Oebo Brouwer, voor de kritische 

beoordeling van mijn manuscript. Dank voor jullie tijd en bereidheid.

In de kinderkliniek van het UMC St Radboud hebben diverse mensen in meer of 

mindere mate een bijdrage geleverd aan het onderzoek. De verpleegkundigen 

van afdeling B31 en BOB en later Q2S en Q2Z, dank voor jullie hulp en flexibiliteit 

bij de onderzoeken van de pasgeborenen met spina bifida. Gerard Jorna, dank 

voor je coördinerende ondersteuning bij de complexe dagprogramma’s die de 

kinderen op BOB doorliepen. Jos Draaisma, René Severijnen en Jean Gardeniers, 

dank voor jullie bijdrage aan de inclusie van controle kinderen. Mirjam, José en 

alle andere KNF-laboranten die een bijdrage hebben geleverd aan het verkrijgen 

van de neurfysiologische metingen, ik ben jullie dankbaar voor jullie inzet en 

flexibiliteit. Yvonne, telkens als ik weer op onmogelijke tijdstippen kwam met 

een pasgeborene met spina bifida of er geschoven moest worden met de 

MEP-tijden, wist jij nog een gaatje te vinden in de diverse agenda’s om een 

“weinig populaire MEP” te plannen. Dank voor je inspanningen en de logistieke 

ondersteuning. Gera, Ineke, Marlou en Ria, dank voor de kinderfysiotherapeutische 

inbreng in het spina bifida project.

Prof. dr. Willemsen, beste Michèl, dank voor je stimulerende en motiverende 

inbreng en de praktische bijstand in de laatste fase van mijn promotietraject. 

Mede doordat we nog wat tijd vrij konden maken, kwam het onderzoek in een 

stroomversnelling. Corrie Erasmus, Charlotte Haaxma, Miel Linders, Jolanda 

Schieving en Lilian Sie, dank voor jullie support, interesse en prettige samen - 

werking op de afdeling kinderneurologie. Hanneke en Jeanne, dank voor jullie 

persoonlijke ondersteuning.

door het aanleggen van een indrukwekkende database voor de retrospectieve 

studie. Jouw kritische houding vormde de basis voor mijn eigen kritisch-weten-

schappelijke instelling. Hoewel jouw commentaren scherp en overvloedig waren, 

stimuleerde je mij om mijn eigen mening te vormen en mijn eigen weg te kiezen. 

Veel discussies hebben we gevoerd over de inhoud, maar ook over de taal van de 

publicaties, waarbij het wetenschappelijk schrijven soms bijna tot kunst werd 

verheven. “Papier is geduldig” was hierbij een belangrijk uitgangspunt. Onze 

discussies over de goud(en) standaard en de parallel met oud ijzer heeft zelfs tot 

een stelling bij dit proefschrift geleid. De laatste jaren was je meer op de 

achtergrond aanwezig, maar dat maakte jouw mening niet minder belangrijk. Ik 

heb veel waardering voor het belang dat je toonde in de afronding van mijn 

promotie. Ook ben ik jou en Silvia dankbaar voor jullie gastvrijheid. Graag kom 

ik de toekomst nog eens aanwaaien bij jullie in Amsterdam. Ik wens jullie veel 

geluk en vreugde in het leven.

Beste dr. Pasman, beste Jaco, het ‘MEP-project’ vormt een belangrijke rode draad 

in mijn promotieonderzoek. Zonder het ‘MEP-project’ en jouw rol daarbij was dit 

proefschrift er niet gekomen. Je hebt mij wegwijs en enthousiast gemaakt in de 

wereld van de klinische neurofysiologie en het was een voorrecht om samen met 

jou alle neurofysiologische metingen te doen. Dank voor de tijd die we samen 

gestoken hebben in het verkrijgen van de data en het schrijven van de publicaties. 

Je bent een stabiele steun en toeverlaat. Er zijn maar weinig momenten, dat het 

niet uitkwam als ik op de stoep stond. Dank voor je relativerend vermogen en je  

rust, waardoor ik altijd het gevoel had dat het wel goed zou komen.

Beste dr. ir. Roeleveld, beste Nel, ook jouw deur staat altijd open, niet alleen voor 

inhoudelijk overleg, maar ook voor een goed gesprek. Je maakte mij wegwijs in 

de wereld van de statistiek, SPSS en SAS. Ik bewonder je passie en ambitie voor de 

wetenschap. Je bewaakte de voortgang van het spina bifida project met oog  

voor persoonlijk welbevinden van de promovendi. Dank voor je verfrissende 

commentaren in de discussies, waarbij jouw kritische feedback, je kennis van 

methodologie en statistiek en ook je algemeen medische kennis waardevolle 

aanvullingen waren. Jouw final correcties brachten de papers telkens weer naar 

een hoger niveau. Jaco en Nel, dank voor de continuïteit die jullie gaven aan het 

project. 

Tot slot, promotor en copromotoren, dank voor alle avondbijeenkomsten door de 

jaren heen. Deze avonden vormden een belangrijke inhoudelijke en informele 

continuïteit, al dan niet met een goed glas wijn. Ik zal deze avonden missen, 

maar een (afsluitende) bijeenkomst op de boot staat volgens mij nog steeds in de 

planning……
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Beste Brian, vriend, huisgenoot, ploeggenoot en ook medeonderzoeker in het 

brede spectrum dat wetenschap heet, wat ben je eigenlijk niet? Ik ben blij dat jij 

op deze bijzondere dag aan mijn andere zijde staat. Jouw gedrevenheid en energie 

zijn bewonderenswaardig. Ook je relativerende opmerkingen waren soms net 

dat duwtje in de rug. We zien elkaar eigenlijk te weinig, dat weten we, maar als 

ik nu zeg dat dit anders wordt, weten we ook allebei dat dit in onze drukke levens 

niet direct zal lukken. Laten we het nemen zoals het komt of om met je eigen 

woorden te spreken: “Vriendschap gaat om kwaliteit en niet om kwantiteit”.

Beste Familie, 

Leny en Albert, dank voor jullie interesse in mijn onderzoeksactiveiten en voor 

de warme gezelligheid die jullie bieden. Het mooie Milsbeek aan de Maas voelt 

voor mij als een tweede ouderlijk huis. Dat we nog maar vaak mogen proosten op 

de bijzondere momenten van het leven. Albert, je hebt een wezenlijke bijdrage 

geleverd aan de totstandkoming van dit boekje en me veel werk uit handen 

genomen door de eindeloze MEP en MRI data nauwgezet in te voeren. Heel veel 

dank hiervoor!

Paul, Noor en de kleine Mees, het is bijzonder dat jullie familie én vrienden zijn. 

Fijn dat jullie altijd in de buurt zijn. De onverwachte momenten van gezelligheid 

met een kopje koffie of een borreltje zijn voor mij een zeer waardevolle afleiding.

Simone en Jeroen, ik bewonder jullie gedrevenheid en wijze waarop jullie je leven 

inrichten. Al zien we elkaar niet zo vaak, jullie steun en aanwezigheid is onvoor-

waardelijk. De geboorten van Thijs en de kleine Bibi maken dat al het andere 

relatief is. Het geluk van deze twee kleintjes is van onschatbare waarde. Prachtig is 

de bijdrage van Bibi: pas vier dagen oud schittert ze op de cover van dit proefschrift.

Lieve pap en mam, jullie hebben mij de mogelijkheden geboden om te worden 

wie ik nu ben en om dit alles te bereiken. Ik kon altijd op jullie steun rekenen bij 

de keuzes die ik maakte. Als 18-jarige hebben jullie mij op de trein gezet naar 

Nijmegen; geen van allen hadden we er toen weet van dat dit uiteindelijk naar 

deze dag zou leiden. Inmiddels weer 18 jaar later sta ik hier opnieuw op een 

belangrijk mijlpaal in mijn leven en ik ben erg blij dat jullie daar bij zijn. Ik wil 

jullie bedanken voor jullie warmte, steun en liefde, waar ik altijd van op aan 

kan. Ik ben er trots op dat jullie mijn ouders zijn.

Lieve Niek, jij bent mijn stabiele thuissituatie, niets is belangrijker! Je geeft me 

de liefde en de ruimte die ik nodig heb. Dank voor je geduld, het uithanden 

nemen en je steun. Samen zijn we goed in het nuttige met het aangename 

combineren. Eindelijk kunnen nu alle stapels papier in ons huis opgeruimd 

worden, om ruimte te maken voor andere belangrijke dingen in het leven. Ik kijk 

uit naar wat de toekomst ons samen zal brengen.

 Niels

Mijn onderzoek liep door tijdens mijn stage in het Rijnstate ziekenhuis. Anneke 

Landstra, Petra van Setten en de vakgroep kindergeneeskunde, dank voor de 

flexibiliteit en het constructieve meedenken in deze periode. Hierdoor kwam de 

voortgang van het onderzoek niet in gevaar. Ik kijk uit naar onze hernieuwde 

samenwerking. Kinderartsen en arts-assistenten Kindergeneeskunde uit het Radboud, 

dank voor een fijne opleidingstijd en de prettige samenwerking. Jos Draaisma, 

dank voor je interesse en enthousiasme voor mijn promotieonderzoek.

Beste Ignace en Marizjenne, medeonderzoekers in het Nijmegen Interdisciplinair 

Spina bifida Programma van de overkant van de Erasmuslaan, dank voor jullie 

inbreng, plezierige samenwerking en gezelligheid. De congrestripjes naar Barcelona 

en Dublin zijn onvergetelijk. Beste Inge, onze parallelle trajecten leverden een 

intensieve samenwerking op. Erg blij was ik, toen je in 2006 aansloot bij het 

project en ik een maatje kreeg om het spina bifida project op de kaart te houden. 

We vormden een goed klankbord voor elkaar en ik ben trots op onze gezamenlijke 

publicaties. Dank voor je humor, je plezierige samenwerking en je persoonlijke 

inbreng. Hoewel onze wegen nu minder parallel lopen (scheiden is een te groot 

woord), hoop ik dat we in de toekomst kunnen blijven samenwerken. In ieder 

geval lever ik nog graag een bijdrage aan de afronding van jouw boekwerk. 

Hiermee en met al het andere dat op je pad komt, wens ik je veel succes en geluk. 

Beste vrienden, gelukkig is er ook een leven naast wetenschap en ziekenhuis. Ik 

ben blij met alle lieve en leuke mensen om mij heen, al heb ik jullie de laatste jaren 

misschien te kort gedaan. Ik waardeer jullie steun en interesse in iets dat misschien 

niet altijd goed te begrijpen was. Echt rustig zal het wel nooit worden, maar met 

het voltooien van dit boekje is er weer meer tijd voor afleiding. De ontspanning, 

het sporten, het plezier (soms tot in de vroege uurtjes), de weekendjes weg in 

diverse samenstellingen en, niet te vergeten, de spaß und gemütlichkeit tijdens de 

wintersportvakanties zorgden voor de oh zo belangrijke balans werk-privé. Op 

naar veel meer bijzondere en mooie momenten in de toekomst. Dank voor de kleur 

die jullie vriendschap geeft! Echte vriendschap kost geen moeite!

Beste Anja, medeonderzoekster van het eerste uur. Samen zijn we, wellicht een 

tikkeltje naïef, aan het spina bifida project begonnen en met alle ups en downs 

hebben we het volbracht. Ik ben blij dat je op deze bijzondere dag naast me staat. 

Ik bewonder je multi-talent en je vermogen veel ballen tegelijk in de lucht te 

houden. De rollercoaster, waarin jij je promotie hebt afgerond is ongekend. Ik 

vind het mooi jou nu te zien genieten van de tijd met je gezin. Dank voor een zeer 

fijne samenwerking, de momenten van ontspanning en je morele ondersteuning. 

Veel geluk voor de toekomst samen met Robin, Rosa en Lotte.
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